
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.1

Distributed Systems:
Types and Architectures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/3
 Types of distributed systems
 Cloud. . .
 Distributed information systems
 Pervasive systems

 Assignment 0

 Ch. 2 - Architectural styles
 Layered
 Object-based
 Resource-centered
 Event-based

 Research directions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.2

Virtualization vs. containerization?
Three approaches:
 (1) Virtualization only – the original
 (2) Containerization only – private server
 (3) Virtualization + containerization – public cloud

Reflects how many layers of abstraction exist
between the hardware and software

What is the benefit of removing the hypervisor?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.3

FEEDBACK – 10/3

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.4

CONTAINERIZATION ONLY

Private Server

No hypervisor

Docker installed on “bare metal”

2 layers
Containerization

No Virtualization

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.3

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.5

VIRTUALIZATION ONLY

2 layers

Virtualization

Virtual Machines

This is really
one layer

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.6

VIRTUALIZATION + CONTAINERIZATION

Public Cloud

Type 1 hypervisor – XEN

3 layers

VM - Host OS
can vary Containerization

&
Virtualization

Containers

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.4

 Why do public cloud providers not permit this?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.7

BARE METAL CONTAINERS

Public Cloud

No hypervisor

Docker installed on “bare metal”

 AWS: How does Amazon handle heavy load during holiday
shopping season/sales?

 The AWS cloud has grow to include huge
infrastructure much larger than that required
to host the retail operation of Amazon.com

 14 regions !

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.5

 What is the difference between a thin and thick client?

 Click “thickness” refers to how much of the
computational work of an application is handled on board
the client vs. the server

 Thick client is “heavy”, performs considerable work

 Requires high-end devices (multi-core tablets, phones)

 Thin client is “lightweight”, very little work done onboard

 Open research – where to place (disperse) computation?

 client/IOT device, edge, fog, cloud

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 3

 Is it possible to upload the ppt/pptx on canvas?
 Can upload PDF, not ppt

 Format preference? 2-up, 4-up, 6-up format

 Office hours – W 3-4pm, or by appointment

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.10

FEEDBACK - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.6

TYPES OF
DISTRIBUTED SYSTEMS

L3.11

 Super computers / High Performance Computing (HPC)

 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Distributed information systems

 Pervasive systems
 Ubiquitous computing systems

 Mobile systems

 Sensor networks

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.12

TYPES OF DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.7

CLOUD COMPUTING STACK

Infrastructure

Platform

Software

CLOUD COMPUTING STACK

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

IaaS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.8

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.15

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 I l lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Obfuscated pricing-Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.16

PUBLIC CLOUD COMPUTING

m4.large example
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour
24hrs/day
30 day/month $72.00/month

on-demand EC2 instance

AWS Lambda? $346.51

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.9

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability

PaaS services built on highly available IaaS
resources

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.17

PAAS SERVICES IMPLEMENTATION

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Lead to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Dif ferent systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.18

DISTRIBUTED INFORMATION SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.10

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.19

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Atomic: The transaction occurs indivisibly

 Consistent: The transaction does not violate system invariants
 Replicas remain constant until all updated

 Isolated: Transactions do not inter fere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed with many sub-
transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.20

TRANSACTIONS: ACID PROPERTIES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.11

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distr ibuted commit protocol (Ch. 8)

 Save application complexity from having to coordinate

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.21

TRANSACTION PROCESSING MONITOR

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – lead to tight coupling

 Client and server endpoints must be up and running

 Interfaces not so interoperable

 Leads to Message-oriented middleware (MOM)

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.22

ENTERPRISE APPLICATION INTEGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.12

 Publish and subscribe systems

 Reduces tight coupling of RPC/RMI

 Applications indicate interest for specific type(s) of
message by sending requests to logical contact points

 Communication middleware delivers messages to
subscribing applications

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.23

MESSAGE-ORIENTED MIDDLEWARE

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware ensures nodes temporarily offl ine later
can receive messages

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.24

APPLICATION INTEGRATION METHODS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.13

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspect’s of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 Types:

 Ubiquitous computing systems

 Mobile systems

 Sensor networks
October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L3.25

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

UBIQUITOUS COMPUTING SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.14

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges,
car equipment, various GPS-enabled devices,

 Devices move, where is the device?

 Changing locations – mobile adhoc network (MANET)

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery -less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.28

SENSOR NETWORKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.15

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.30

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.16

 Tradeoff space: sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute

● No node coordination power

● No node processing or storage ● “Smart” nodes

● “Dumb” nodes ● Expensive nodes

● Less expensive node ● Less network traffic

● More network traffic

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.31

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.32

SENSOR NETWORKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.17

QUESTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L3.33

EXTRA SLIDES

34

