
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.1

Distributed Systems:
Types and Architectures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/3
 Types of distributed systems
 Cloud. . .
 Distributed information systems
 Pervasive systems

 Assignment 0

 Ch. 2 - Architectural styles
 Layered
 Object-based
 Resource-centered
 Event-based

 Research directions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

Virtualization vs. containerization?
Three approaches:
 (1) Virtualization only – the original
 (2) Containerization only – private server
 (3) Virtualization + containerization – public cloud

Reflects how many layers of abstraction exist
between the hardware and software

What is the benefit of removing the hypervisor?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.3

FEEDBACK – 10/3

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.4

CONTAINERIZATION ONLY

Private Server

No hypervisor

Docker installed on “bare metal”

2 layers
Containerization

No Virtualization

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.5

VIRTUALIZATION ONLY

2 layers

Virtualization

Virtual Machines

This is really
one layer

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.6

VIRTUALIZATION + CONTAINERIZATION

Public Cloud

Type 1 hypervisor – XEN

3 layers

VM - Host OS
can vary Containerization

&
Virtualization

Containers

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.2

 Why do public cloud providers not permit this?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.7

BARE METAL CONTAINERS

Public Cloud

No hypervisor

Docker installed on “bare metal”

 AWS: How does Amazon handle heavy load during holiday
shopping season/sales?

 The AWS cloud has grow to include huge
infrastructure much larger than that required
to host the retail operation of Amazon.com

 14 regions !

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

 What is the difference between a thin and thick client?

 Click “thickness” refers to how much of the
computational work of an application is handled on board
the client vs. the server

 Thick client is “heavy”, performs considerable work

 Requires high-end devices (multi-core tablets, phones)

 Thin client is “lightweight”, very little work done onboard

 Open research – where to place (disperse) computation?

 client/IOT device, edge, fog, cloud

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 3

 Is it possible to upload the ppt/pptx on canvas?
 Can upload PDF, not ppt

 Format preference? 2-up, 4-up, 6-up format

 Office hours – W 3-4pm, or by appointment

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.10

FEEDBACK - 4

TYPES OF
DISTRIBUTED SYSTEMS

L3.11

 Super computers / High Performance Computing (HPC)

 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Distributed information systems

 Pervasive systems
 Ubiquitous computing systems

 Mobile systems

 Sensor networks

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.12

TYPES OF DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.3

CLOUD COMPUTING STACK

Infrastructure

Platform

Software

CLOUD COMPUTING STACK

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

IaaS

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.15

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 Il lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Obfuscated pricing-Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.16

PUBLIC CLOUD COMPUTING

m4.large example
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour
24hrs/day
30 day/month  $72.00/month

on-demand EC2 instance

AWS Lambda? $346.51

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability

PaaS services built on highly available IaaS
resources

October 5, 2017 TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.17

PAAS SERVICES IMPLEMENTATION

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Lead to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Different systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.18

DISTRIBUTED INFORMATION SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.4

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.19

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Atomic: The transaction occurs indivisibly

 Consistent: The transaction does not violate system invariants
 Replicas remain constant until all updated

 Isolated: Transactions do not interfere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed with many sub-
transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.20

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distributed commit protocol (Ch. 8)

 Save application complexity from having to coordinate

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.21

TRANSACTION PROCESSING MONITOR

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – lead to tight coupling

 Client and server endpoints must be up and running

 Interfaces not so interoperable

 Leads to Message-oriented middleware (MOM)

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.22

ENTERPRISE APPLICATION INTEGRATION

 Publish and subscribe systems

 Reduces tight coupling of RPC/RMI

 Applications indicate interest for specific type(s) of
message by sending requests to logical contact points

 Communication middleware delivers messages to
subscribing applications

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.23

MESSAGE-ORIENTED MIDDLEWARE

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware ensures nodes temporarily offline later
can receive messages

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.24

APPLICATION INTEGRATION METHODS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.5

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspect’s of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 Types:

 Ubiquitous computing systems

 Mobile systems

 Sensor networks
October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L3.25

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

UBIQUITOUS COMPUTING SYSTEMS

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges,
car equipment, various GPS-enabled devices,

 Devices move, where is the device?

 Changing locations – mobile adhoc network (MANET)

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery-less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.28

SENSOR NETWORKS

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.30

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 5, 2017

Slides by Wes J. Lloyd L3.6

 Tradeoff space: sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute

● No node coordination power

● No node processing or storage ● “Smart” nodes

● “Dumb” nodes ● Expensive nodes

● Less expensive node ● Less network traffic

● More network traffic

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.31

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L3.32

SENSOR NETWORKS

QUESTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L3.33

EXTRA SLIDES

34

