
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.1

Consensus, Consistency,
Replication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions
Assignment #3 Questions
Review Quiz #2
Assignment #1 Feedback
 Feedback from 12/5

Raft Consensus Algorithm
Ch. 7 – Consistency and Replication
 Introduction
Data centric consistency models

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.2

 UDP “store” command

 For the LARGE test file, since UDP does not automatically
split messages into multiple packets, it is easy to exceed a
statically defined byte array size

Many folks used [1024] bytes

 Two strategies to address this:

 (1 – CHEAP SOLUTION) (instructor did this)

Extend to the largest allowable UDP packet size
 Set to ~65,000 bytes

 Append a “message truncated” message at the end

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.3

ASSIGNMENT #1 FEEDBACK

 (2 – THE RIGHT WAY)
Break message into multiple numbered packets
 Start UDP communication with client by sending total

number of messages (packets = total size / 1024)

 Wait until client echoes back this number

 Send messages of 1024 bytes each

 Begin each with a monotonically increasing ID

 Client knows how many messages it should receive

 If any message is lost, client gets an opportunity to ask for
messages to be replayed at end

 Client assembles “store” results from multiple packets
 UDP messages could be out of order

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.4

ASSIGNMENT #1 - FEEDBACK

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.3

 From Quiz #2:

 Question #3

 For total ordered multicasting if there are two processes,
both sharing data element X, and initially X=10.

 (a) How many messages does P1 receive, when the only
operation is *by* P1: X=X+100 ?

 (b) If P1 performs X=X+100 at Lamport Clock (20), and
P2 performs X=X*2 at Lamport Clock (10), what is X’s
value with total ordered multicasting?

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.5

FEEDBACK FROM 12/5

November 21, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.4

 (c) Using total ordered multicasting, how many messages are
exchanged by P1 and P2 to per form:

 P1 (clock=20) X=X+100

 P2 (clock=10) X=X*2

 Recall the whiteboard…

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.7

FEEDBACK – 2

 What does it mean, “ways logs can diverge”
 RAFT, by using a leader, limits the number of ways logs

(across the nodes) can become out of sync
 The leader’s log is always assumed to be the “master” copy.

 Ways logs can diverge
 (a) Fol lower may be missing entries present on leader
 (b) Fol lower may have extra entries not present on the leader
 (c) Both A and B

 Disagreements are resolved by overwriting follower’s logs with
the leader’s

 The election safety property ensures that the leader wil l
always have an up-to-date log.

 Majority rules in RAFT elections (and log cer tification)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.8

FEEDBACK - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.5

 Where should the i t be Intermediate concurrent hash table in
ass ignment 2 deployed?

 Each node should maintain a l ist of keys which are presently
involved in put or del transactions

 Just one transaction is allowed at any t ime on the same key

 If a node finds a key is already involved in another transaction (by
checking the concurrent hash table) it REJECTS the dput1 request
 The transaction originator then sends dputabort instead of dput2

 If servers are multi- threaded, there could be multiple concurrent
transactions to alter many keys simultaneously

 Improvement: the originator, af ter fail ing the transaction across the
nodes, could retry the transaction, perhaps up to 10x
 Not a requirement for Assignment 2

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.9

FEEDBACK - 4

 I ’m confused about port mapping when using SWARM mode

docker service create --name kvservice --
replicas=5 --network overnet --publish
1234:1234 kvstore

 Publishing port makes the service available from any docker-
machine in the swarm by accessing its IP and port

 Syntax is: --publish <external por t>:<container port>

 Access to the external por t of any docker-machine in the
swarm wil l be routed to the internal port on any service
container (Presumably in round-robin fashion)

 Feature is similar to load balancing; provided by docker swarm

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.10

FEEDBACK - 5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.6

RAFT CONSENSUS

L19.11

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.7

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.13

LOG REPLICATION

 FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.14

LOG REPLICATION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.8

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.15

RAFT - LOG REPLICATION ALGORITHM

 Synchronizing follower logs

 (2) If fol lower rejects AppendEntries() then leader decrements
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the

follower for each AppendEntries() RPC call

 Loop continues unti l leader walks back i ts “follower-
nextIndex” until it matches what is committed at the follower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the follower accepts
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.16

LOG REPLICATION ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.9

 Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

 Raft handles follower node failure by retrying
communication indefinitely

 If crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.17

LOG REPLICATION ALGORITHM - 3

 Each node keeps a commitIndex and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower

logs (not state machines) **- described next sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.18

COMMITTING LOG ENTRIES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.10

 How leader determines when to update it ’s commitIndex

 Use a majority consensus of what has been committed at
follower logs

 Leader maintains follower state arrays:

 nextIndex[]: index of next log entry to send to follower

 matchIndex[]: index of highest log entry known to be
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.19

UPDATING COMMIT-INDEX OF LEADER

 Cluster discovery performed at startup
 Use any method:
 Static file, UDP discovery (kv-store), TCP discovery (kv-

store)
 Once membership is discovered, it can remain

static/fixed
 Nodes can go offline, come back online
 Once a common configuration is propagated across the

system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.20

RAFT CLUSTER MEMBERSHIP – A3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.11

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.21

A3 RAFT SIMPLIFICATIONS

 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a follower then
give-up and move to next follower

 Instead of pushing data to followers when put() or del() is
received by leader, can wait unti l next scheduled heartbeat to
follower

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.22

A3 RAFT SIMPLIFICATIONS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.12

CONSISTENCY AND
REPLICATION

L19.23

(1) Fault tolerance: continue working after one replica
crashes

(2) Provide better protection against corrupted data

(3) Performance

(3a) Scaling up systems (scalability)

 Replicate server, load balance workload across replicas

(3b) For providing geographically close replicas

 Replicas at the edge

MOVE DATA TO THE COMPUTATION

 Performance perceived at the edge increases

 But what is the cost of localized replication?

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.24

WHY REPLICATE DATA?

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.13

 Network bandwidth consumed maintaining replicas
 Updates must be sent out and coordinated

 Maintaining consistency may be dif ficult
 All copies must be updated to ensure consistency

 WHEN and HOW updates need to be performed determines the
prices of data replication…

 Web caching example
 Web browser caches local content to improve per formance
 Doesn’t know when content is “stale”
 Solution: Place server in charge of replication not browser
 Server invalidates and updates client cached copies
 Track how current copies are
 Degrades server performance  overhead from tracking, etc.

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.25

DATA REPLICATION COSTS

 Process P accesses a local replica N times per second
 Replica is updated M times per second
 Updates involve complete refreshes of the data
 If N << M (very low access rate) many updates M are never

accessed by P.
 Network communication overhead for most updates is useless.

 TRADEOFFS:
 Either move the replica away from P
 So the total number of accesses from multiple processes is higher

 Or, apply a different strategy for updating the replica
 i.e. less frequent updates, possibly need based

 BALANCE TRADEOFF BETWEEN REPLICA ACCESS FREQUENCY
AND COSTS OF REPLICATION (communication overhead)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.26

REPLICATION TRADEOFF EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.14

 TIGHT CONSISTENCY
 Reads must return same result
 Replication must occur after an update, before a read
 Provided by synchronous replication
 Update is performed across all copies as a single atomic

operation (or transaction)
 Assignment 2 replication is with t ight consistency.

 Keeping multiple copies consistent is subject to scalability
problems

 May need global ordering of operations (e.g. Lamport clocks),
or the use of a coordinator to assign order

 Global synchronization across a wide area network is time
consuming (network latency)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.27

REPLICATION: SCALABILITY ISSUES

 Only solution is often to relax the consistency constraints
 Updates do not need to be executed as atomic operations
 Try to avoid instantaneous global synchronizations
 TRADEOFF: consistency
 Not all copies may always be the same everywhere

 Whether consistency requirements can be relaxed
depends on:
 Access and update patterns
 Use cases of the data

 Range of consistency models exist
 Implemented with distribution and consistency protocols

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.28

REPLICATION SCALABILITY - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.15

DATA CENTRIC
CONSISTENCY MODELS

L19.29

 Data consistency is discussed in the context of
 Distributed shared memory

 Distributed shared database

 Distributed shared file system

 Generically referred to as a “data store”

 Each process has a nearby replica:

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.30

DATA-CONSISTENCY MODELS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.16

 CONSISTENCY MODEL

 Rules that must be followed to ensure consistency

 Represents a contract between processes and data store

 If processes agree to obey cer tain rules, store promises to
work correctly

 No general rules for loosening consistency

 What can be tolerated is highly application dependent

 Three types of inconsistencies

 Data variation

 Staleness

 Ordering of update operations

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.31

DATA-CONSISTENCY MODELS

 Ranges assigned to “what is allowed” for these deviations:
 How much data variation?
 How old/stale can the data be?
 How much can ordering of update operations vary?

 Idea is to specify bounds for numeric deviation:
 Relative numeric deviation: 2% (percent)
 Absolute numeric deviation: .2 (implies a particular scale)

 Numeric deviation: may also refer to the number of updates
applied to a replica

 Staleness: specifies bounds relative to time, e.g. how old?
 Ordering of updates: updates applied tentatively to local copy;

may later be rolled back and applied in dif ferent order before
becoming permanent

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.32

CONTINUOUS CONSISTENCY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.17

 Abbreviated as “Conit”

 Specified the unit to measure consistency

 Example: Tracking fleet of rental cars

 Variables for a “conit”:

 (g) gasoline consumed

 (p) price paid for gasoline

 (d) distance traveled

 Server keep conit consistently replicated

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.33

CONSISTENCY UNITS (CONIT)

 Each process has vector clock (known t ime @A, known t ime @B)

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.34

CONSISTENCY UNIT (CONIT)

committed

Log
of

Events

A B

number of
unseen
events

sum of
unseen
events

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.18

 Result of any execution is the same as if the operations of all
processes were executed in some sequential order, and the
operations of each individual process appear in this sequence
in the order specified by its program.

 Exact order seen by processes DOES NOT MATTER

 As long as they all agree

 Processes here must see: R(x)b, then R(x)a

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.35

SEQUENTIAL CONSISTENCY

Sequentially Consistent NOT Sequentially Consistent

 Writes that are potentially causally related must be seen by all
processes in the same order .

 Concurrent writes may be seen in a dif ferent order by
different processes.

 Concurrent writes happen with no READS in between
 Events can be seen as “concurrent events”

 Which writes are concurrent?

 Note how the reads after the concurrent write for P3 and P4
are in a different order.

 This is ok with causal consistency

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.36

CAUSAL CONSISTENCY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.19

 Which timing graphs uphold causal consistency?

 (A)

 (B)

 Which writes are concurrent?

 For (B), since R(x)a can influence W(x)b, the subsequent reads
by P3 and P4 must be in the same order . . .

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.37

CAUSAL CONSISTENCY - 2

 Locks can be used to control access to data members

 Releasing a lock tells the distributed system that a
variable needs to be synchronized / updated.

 A simple read without obtaining a lock may result in a
stale value

 Here P2 does not obtain L(y) before reading y R(y)

 P2 receives a stale/old value

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.38

ENTRY CONSISTENCY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.20

 Consistency models define what to expect when processes
concurrently operate on distributed data

 Data is consistent, if it adheres to the rules of the model

 Coherence models: describe what can be expected for only a
single data item

 Data item is replicated

 Data item is coherent when copies adhere to consistency
model rules

 Coherence often uses sequential consistency applied to a
single data item

 For concurrent writes, all processes eventually see the same
order of updates

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.39

CONSISTENCY VS. COHERENCE

 If no new updates are made to a given data item,
eventually all accesses to that item will return the last
updated value.

 System must reconcile differences between multiple
distributed copies of data

 Servers must exchange data updates
 Servers must reconcile updates to agree on final state
 Read repair: correction done when read finds

inconsistency
Write repair: correct done on write operation
 Asynchronous repair: correction done independently from

read and write
December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L19.40

EVENTUAL CONSISTENCY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.21

 Most processes mainly read from data store

 Rarely update data

 How fast should updates be made to read-only processes?

 Example: Content Delivery Networks (video streaming)

 Updates are propagated slowly

 Conflicts: write-write and read-write (most common)

 Often acceptable to propagate updates in a lazy manner
when most processes perform only READ-ONLY access

 All replica gradually (eventually) become consistent

December 7, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L19.41

EVENTUAL CONSISTENCY - 2

QUESTIONS

December 7, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L19.42

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 7, 2017

Slides by Wes J. Lloyd L19.22

EXTRA SLIDES

43

