
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.1

Consensus, Consistency,
Replication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

Assignment #3 Questions

Assignment #1 Feedback

 Feedback from 11/30

Raft Consensus Algorithm

Ch. 7 – Consistency and Replication
 Introduction

Data centric consistency models

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.2

 Java 9 was just released in September
 No requirement to use Java 9
 Tested a few programs in Java 8 and Java 9. Observed

programs running 2x as slow in Java 9 vs. Java 8

 Developing the entire program as static methods is a poor
programming practice
 Static void main is a static method, which provides the

program’s entry point.
 Once inside static void main, it is typical to instantiate

instances of classes (called objects) to provide program
functionality

 Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for new client requests

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.3

ASSIGNMENT #1 FEEDBACK

 Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for every new client request

 UP SIDE: Avoiding the use of threads to handle concurrent operations
for the key-value store makes all operations sequential

 Concurrency problems are avoided: race conditions, deadlock

 Requests are simply queued until the server thread is available

 PROBLEM: Approach will not scale

 Consider running the KV-store on a c4.8xlarge AWS EC2 Instance

 Instance has 36 vCPUs and can process up to 36 requests in parallel

 Server can process at most 1 sequential request at a time

 Load average will generally not exceed 1.0

 Cost of c4.8xlarge is $1.59, but sequential code only returns 4.4₡
 Only a 2.7% return on investment

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.4

A1 FEEDBACK - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.3

 Have seen many cases of using a separate thread for an
entire server (e.g. TCP, UDP), but not for every new client
request

 DOWN SIDES

 10 points for using multiple threads

 10 points for concurrency
 Avoiding the problem is not necessarily a solution

 Does not scale, no ROI

 KEY GOAL: obtain practice developing multithreaded,
synchronized code which is scalable, that can leverage
the powerful multicore systems of today and tomorrow

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.5

A1 FEEDBACK - 3

 One KEY advantage of distributed objects based solutions,
RPC, RMI, etc. is the ability to create RICH interfaces of
methods to avoid painstaking parsing of the socket streams
(TCP,UDP)

 For example, a rich inter face for the RMI client/server key -
value store may include:
 get(), put(), del(), store(), exit() methods in Java

 Advantage: the r ich inter face allows the client to directly
invoke the remote server method, and nicely hand-off the
required data, and receive either a primitive data type (String,
int, etc.) or custom object as a result

 That being said . . .

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.6

A1 FEEDBACK - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.4

 What is not ideal about this RMI interface for the Key -Value
store?

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

public interface RMIhandler extends Remote

{

String RMIrequest(String Msg) throws RemoteException;

}

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.7

A1 FEEDBACK - 5

 For Distributed Mutual Exclusion, Ring Algorithm:

 What if the skipped successor becomes active when
message is passed to other node?

 If initially skipped, then the node will NOT appear in the
active node list which is passed around the ring.

 The newly restored node will not have a vote in the
election.

 The node should be able to participate in future elections.

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.8

FEEDBACK FROM 11/30

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.5

RAFT CONSENSUS

L18.9

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.10

DESIGN GOALS FOR RAFT

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.6

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.11

DESIGN GOALS FOR RAFT - 2

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.12

DESIGN GOALS FOR RAFT - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.7

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.13

RAFT ALGORITHM BASICS

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.14

RAFT BASICS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.8

 Follower

 Candidate

 Leader

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.15

RAFT ELECTION: NODE STATES

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.9

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.17

TERMS

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.18

TERMS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.10

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.19

RAFT METHODS

 Every node has a randomized ElectionTimeout value
 If a node (follower) receives no heartbeat from the leader

after the timeout, node expects the leader has gone offline
 NEW ELECTION:
 (1) The node begins a new election as candidate, sending

RequestVote() to every node in the system
 Candidate immediately votes for itself
 RequestVote() sent in parallel to all nodes

 (2) Follower votes for fi rst candidate a RequestVote() is
received from only i f the candidate’s log is at least (or more)
up-to-date
 Inspect candidate provided last log index and log term values

 (3) If candidate obtains a majority of the votes (determined by
calculating majority total from node directory) i t wins the
election!!!

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.20

RAFT ELECTIONS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.11

 Election outcomes

 A – Candidate wins

 B – Another server establishes leadership

 C – There is no winner

 Servers vote for only one candidate

 Only (1) winner per election

 Only (1) leader per term

 “Election safety property”

 New leader sends empty heartbeat to nodes to establish
leadership

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.21

ELECTIONS - 2

 While a candidate waits for votes, it may receive an
AppendEntries() call from another leader
 If the leader’s term >= candidate’s term then the candidate

concedes the election and returns to Follower state

 If multiple elections, then no one candidate may receive a
majority vote. One election times out f irst based on a
randomized-election-timeout value
 Random timeout values help spread out the candidates to prevent

endless looping

 KEY IDEA: by using random timeouts,
when no majority vote occurs, a random
node times out first and starts a new election before anyone
else by incrementing the term #, and sending RequestVote()

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.22

ELECTIONS - 3

Election

Timeout

Election

Timeout

Candidate 1 Candidate 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.12

 Randomized timeout values should be reset every time

 Paper suggests a min timeout of 150ms, and max of
300ms

 Timeout should be “an order of magnitude” greater (10x)
than the node-to-node communication latency

 I’m presently using 500 – 1000ms

 Can experiment with different values

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.23

ELECTIONS - 4

 RAFT enforces leader logs to be up-to-date during an election

 Nodes ONLY vote for a candidate *if* :

 Candidate local term and log number >= follower

 Candidate’s log *must be* at least as up-to-date as the
majority of follower’s log

 MORE up-to-date log is defined as log with:

 Higher term # in last log entry

 - -- OR ---

 When term of last log entries match, log with more entires

 E.g. longer log

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.24

ELECTIONS - 5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.13

 Term 1: normal election

 Term 2: normal election

 Term 3: SPLIT VOTE, no leader emerges, election times out

 Term 4: normal election

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.25

TYPICAL ELECTION SEQUENCE

 Raft guarantees that each of these properties is always true

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.26

RAFT SAFETY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.14

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.27

LOG REPLICATION

 FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.28

LOG REPLICATION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.15

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.29

RAFT - LOG REPLICATION ALGORITHM

 Synchronizing follower logs

 (2) If fol lower rejects AppendEntries() then leader decrements
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the

follower for each AppendEntries() RPC call

 Loop continues unti l leader walks back i ts “follower-
nextIndex” until it matches what is committed at the follower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the follower accepts
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.30

LOG REPLICATION ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.16

 Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

 Raft handles follower node failure by retrying
communication indefinitely

 If crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.31

LOG REPLICATION ALGORITHM - 3

 Each node keeps a commitIndex and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower

logs (not state machines) **- described next sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.32

COMMITTING LOG ENTRIES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.17

 How leader determines when to update it ’s commitIndex

 Use a majority consensus of what has been committed at
follower logs

 Leader maintains follower state arrays:

 nextIndex[]: index of next log entry to send to follower

 matchIndex[]: index of highest log entry known to be
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.33

UPDATING COMMIT-INDEX OF LEADER

 Cluster discovery performed at startup

 Use any method:

 Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

 One membership is discovered, it can remain static/fixed

 Nodes can go offline, come back online

 One a common configuration is propagated across the
system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.34

RAFT CLUSTER MEMBERSHIP – A3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.18

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.35

A3 RAFT SIMPLIFICATIONS

 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a follower then
give-up and move to next follower

 Instead of pushing data to followers when put() or del() is
received by leader, can wait unti l next scheduled heartbeat to
follower

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.36

A3 RAFT SIMPLIFICATIONS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.19

QUESTIONS

December 5, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L18.37

EXTRA SLIDES

38

