
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.1

Consensus, Consistency,
Replication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

Assignment #3 Questions

Assignment #1 Feedback

 Feedback from 11/30

Raft Consensus Algorithm

Ch. 7 – Consistency and Replication
 Introduction

Data centric consistency models

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.2

 Java 9 was just released in September
 No requirement to use Java 9
 Tested a few programs in Java 8 and Java 9. Observed

programs running 2x as slow in Java 9 vs. Java 8

 Developing the entire program as static methods is a poor
programming practice
 Static void main is a static method, which provides the

program’s entry point.
 Once inside static void main, it is typical to instantiate

instances of classes (called objects) to provide program
functionality

 Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for new client requests

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.3

ASSIGNMENT #1 FEEDBACK

 Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for every new client request

 UP SIDE: Avoiding the use of threads to handle concurrent operations
for the key-value store makes all operations sequential

 Concurrency problems are avoided: race conditions, deadlock

 Requests are simply queued until the server thread is available

 PROBLEM: Approach will not scale

 Consider running the KV-store on a c4.8xlarge AWS EC2 Instance

 Instance has 36 vCPUs and can process up to 36 requests in parallel

 Server can process at most 1 sequential request at a time

 Load average will generally not exceed 1.0

 Cost of c4.8xlarge is $1.59, but sequential code only returns 4.4₡
 Only a 2.7% return on investment

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.4

A1 FEEDBACK - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.3

 Have seen many cases of using a separate thread for an
entire server (e.g. TCP, UDP), but not for every new client
request

 DOWN SIDES

 10 points for using multiple threads

 10 points for concurrency
 Avoiding the problem is not necessarily a solution

 Does not scale, no ROI

 KEY GOAL: obtain practice developing multithreaded,
synchronized code which is scalable, that can leverage
the powerful multicore systems of today and tomorrow

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.5

A1 FEEDBACK - 3

 One KEY advantage of distributed objects based solutions,
RPC, RMI, etc. is the ability to create RICH interfaces of
methods to avoid painstaking parsing of the socket streams
(TCP,UDP)

 For example, a rich inter face for the RMI client/server key -
value store may include:
 get(), put(), del(), store(), exit() methods in Java

 Advantage: the r ich inter face allows the client to directly
invoke the remote server method, and nicely hand-off the
required data, and receive either a primitive data type (String,
int, etc.) or custom object as a result

 That being said . . .

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.6

A1 FEEDBACK - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.4

 What is not ideal about this RMI interface for the Key -Value
store?

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

public interface RMIhandler extends Remote

{

String RMIrequest(String Msg) throws RemoteException;

}

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.7

A1 FEEDBACK - 5

 For Distributed Mutual Exclusion, Ring Algorithm:

 What if the skipped successor becomes active when
message is passed to other node?

 If initially skipped, then the node will NOT appear in the
active node list which is passed around the ring.

 The newly restored node will not have a vote in the
election.

 The node should be able to participate in future elections.

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.8

FEEDBACK FROM 11/30

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.5

RAFT CONSENSUS

L18.9

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.10

DESIGN GOALS FOR RAFT

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.6

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.11

DESIGN GOALS FOR RAFT - 2

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.12

DESIGN GOALS FOR RAFT - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.7

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader to nodes

When leader fails, a new leader is elected

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.13

RAFT ALGORITHM BASICS

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.14

RAFT BASICS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.8

 Follower

 Candidate

 Leader

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.15

RAFT ELECTION: NODE STATES

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.9

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.17

TERMS

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.18

TERMS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.10

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.19

RAFT METHODS

 Every node has a randomized ElectionTimeout value
 If a node (follower) receives no heartbeat from the leader

after the timeout, node expects the leader has gone offline
 NEW ELECTION:
 (1) The node begins a new election as candidate, sending

RequestVote() to every node in the system
 Candidate immediately votes for itself
 RequestVote() sent in parallel to all nodes

 (2) Follower votes for fi rst candidate a RequestVote() is
received from only i f the candidate’s log is at least (or more)
up-to-date
 Inspect candidate provided last log index and log term values

 (3) If candidate obtains a majority of the votes (determined by
calculating majority total from node directory) i t wins the
election!!!

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.20

RAFT ELECTIONS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.11

 Election outcomes

 A – Candidate wins

 B – Another server establishes leadership

 C – There is no winner

 Servers vote for only one candidate

 Only (1) winner per election

 Only (1) leader per term

 “Election safety property”

 New leader sends empty heartbeat to nodes to establish
leadership

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.21

ELECTIONS - 2

 While a candidate waits for votes, it may receive an
AppendEntries() call from another leader
 If the leader’s term >= candidate’s term then the candidate

concedes the election and returns to Follower state

 If multiple elections, then no one candidate may receive a
majority vote. One election times out f irst based on a
randomized-election-timeout value
 Random timeout values help spread out the candidates to prevent

endless looping

 KEY IDEA: by using random timeouts,
when no majority vote occurs, a random
node times out first and starts a new election before anyone
else by incrementing the term #, and sending RequestVote()

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.22

ELECTIONS - 3

Election

Timeout

Election

Timeout

Candidate 1 Candidate 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.12

 Randomized timeout values should be reset every time

 Paper suggests a min timeout of 150ms, and max of
300ms

 Timeout should be “an order of magnitude” greater (10x)
than the node-to-node communication latency

 I’m presently using 500 – 1000ms

 Can experiment with different values

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.23

ELECTIONS - 4

 RAFT enforces leader logs to be up-to-date during an election

 Nodes ONLY vote for a candidate *if* :

 Candidate local term and log number >= follower

 Candidate’s log *must be* at least as up-to-date as the
majority of follower’s log

 MORE up-to-date log is defined as log with:

 Higher term # in last log entry

 - -- OR ---

 When term of last log entries match, log with more entires

 E.g. longer log

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.24

ELECTIONS - 5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.13

 Term 1: normal election

 Term 2: normal election

 Term 3: SPLIT VOTE, no leader emerges, election times out

 Term 4: normal election

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.25

TYPICAL ELECTION SEQUENCE

 Raft guarantees that each of these properties is always true

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.26

RAFT SAFETY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.14

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.27

LOG REPLICATION

 FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.28

LOG REPLICATION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.15

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.29

RAFT - LOG REPLICATION ALGORITHM

 Synchronizing follower logs

 (2) If fol lower rejects AppendEntries() then leader decrements
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the

follower for each AppendEntries() RPC call

 Loop continues unti l leader walks back i ts “follower-
nextIndex” until it matches what is committed at the follower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the follower accepts
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.30

LOG REPLICATION ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.16

 Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

 Raft handles follower node failure by retrying
communication indefinitely

 If crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.31

LOG REPLICATION ALGORITHM - 3

 Each node keeps a commitIndex and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower

logs (not state machines) **- described next sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.32

COMMITTING LOG ENTRIES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.17

 How leader determines when to update it ’s commitIndex

 Use a majority consensus of what has been committed at
follower logs

 Leader maintains follower state arrays:

 nextIndex[]: index of next log entry to send to follower

 matchIndex[]: index of highest log entry known to be
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.33

UPDATING COMMIT-INDEX OF LEADER

 Cluster discovery performed at startup

 Use any method:

 Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

 One membership is discovered, it can remain static/fixed

 Nodes can go offline, come back online

 One a common configuration is propagated across the
system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.34

RAFT CLUSTER MEMBERSHIP – A3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.18

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.35

A3 RAFT SIMPLIFICATIONS

 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a follower then
give-up and move to next follower

 Instead of pushing data to followers when put() or del() is
received by leader, can wait unti l next scheduled heartbeat to
follower

December 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.36

A3 RAFT SIMPLIFICATIONS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.19

QUESTIONS

December 5, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L18.37

EXTRA SLIDES

38

