TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Consensus, Consistency,
Replication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Assignment #2 Questions
m Assignment #3 Questions
m Assignment #1 Feedback
= Feedback from 11/30

= Raft Consensus Algorithm

mCh. 7 - Consistency and Replication
= Introduction
= Data centric consistency models

TCSS558: Applied Distributed Computing [Fall 2017]

December 5, 2017 Institute of Technology, University of Washington - Tacoma

L18.2

Slides by Wes J. Lloyd

December 5, 2017

L18.1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

ASSIGNMENT #1 FEEDBACK

® Java 9 was just released in September
= No requirement to use Java 9

= Tested a few programs in Java 8 and Java 9. Observed
programs running 2x as slow in Java 9 vs. Java 8

® Developing the entire program as static methods is a poor
programming practice
= Static void main is a static method, which provides the
program’s entry point.
= Once inside static void main, it is typical to instantiate
instances of classes (called objects) to provide program
functionality

® Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for new client requests

TCSS558: Applied Distributed Computing [Fall 2017]

1183
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Al FEEDBACK - 2

® Have seen many cases of using a separate thread for an entire
server (e.g. TCP, UDP), but not for every new client request

= UP SIDE: Avoiding the use of threads to handle concurrent operations
for the key-value store makes all operations sequential

= Concurrency problems are avoided: race conditions, deadlock

= Requests are simply queued until the server thread is available

= PROBLEM: Approach will not scale

= Consider running the KV-store on a c4.8xlarge AWS EC2 Instance

= Instance has 36 vCPUs and can process up to 36 requests in parallel
= Server can process at most 1 sequential request at a time

= Load average will generally not exceed 1.0

= Cost of c4.8xlarge is $1.59, but sequential code only returns 4.4¢

= Only 2 2.7% return on investment

TCSS558: Applied Distributed Computing [Fall 2017]

L18.4
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

Al FEEDBACK - 3

® Have seen many cases of using a separate thread for an
entire server (e.g. TCP, UDP), but not for every new client
request
= DOWN SIDES

= 10 points for using multiple threads

= 10 points for concurrency
Avoiding the problem is not necessarily a solution
Does not scale, no ROI

= KEY GOAL: obtain practice developing multithreaded,
synchronized code which is scalable, that can leverage
the powerful multicore systems of today and tomorrow

TCSS558: Applied Distributed Computing [Fall 2017]

1185
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Al FEEDBACK - 4

® One KEY advantage of distributed objects based solutions,
RPC, RMI, etc. is the ability to create RICH interfaces of
methods to avoid painstaking parsing of the socket streams
(TCP,UDP)

® For example, a rich interface for the RMI client/server key-
value store may include:

= get(), put(), del(), store(), exit() methods in Java

= Advantage: the rich interface allows the client to directly
invoke the remote server method, and nicely hand-off the
required data, and receive either a primitive data type (String,
int, etc.) or custom object as a result

= That being said . . .

TCSS558: Applied Distributed Computing [Fall 2017]

L18.6
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

Al FEEDBACK - 5

® What is not ideal about this RMI interface for the Key-Value
store?

import java.util.*;
import java.rmi.*;

import java.rmi.server.¥*;

public interface RMIhandler extends Remote

{

String RMIrequest (String Msg) throws RemoteException;

}

TCSS558: Applied Distributed Computing [Fall 2017]

December.5, 2017 Institute of Technology, University of Washington - Tacoma

L18.7

FEEDBACK FROM 11/30

® For Distributed Mutual Exclusion, Ring Algorithm:

® What if the skipped successor becomes active when
message is passed to other node?

= |f initially skipped, then the node will NOT appear in the
active node list which is passed around the ring.

B The newly restored node will not have a vote in the
election.

B The node should be able to participate in future elections.

TCSS558: Applied Distributed Computing [Fall 2017]

December 5, 2017 Institute of Technology, University of Washington - Tacoma

L18.8

Slides by Wes J. Lloyd

December 5, 2017

L18.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

RAFT CONSENSUS

® Complete and practical foundation for building systems

= Reduce

DESIGN GOALS FOR RAFT

design work for developers

® Safe under all conditions

® Efficient for common operations

= UNDERSTANDABLE

= So Raft can be implemented and extended as needed in
real world scenarios

December 5, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.10

Slides by Wes J. Lloyd

December 5, 2017

L18.5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

DESIGN GOALS FOR RAFT - 2

= Raft decomposes consensus into sub-problems:

= Leader election: leader election algorithms adjustable

= Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

= Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

= Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

TCSS558: Applied Distributed Computing [Fall 2017]

118.11
Institute of Technology, University of Washington - Tacoma

December 5, 2017

DESIGN GOALS FOR RAFT -3

B Simplify the state space

® Reduce the number of states to consider
® Make system more coherent

® Eliminate non-determinisim

= LOGS not allowed to have holes

®E Limit ways logs can be inconsistent

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.12
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

RAFT ALGORITHM BASICS

= Begins by electing a leader
m | eader manages log replication

= LEADER ACTIVITIES
= Accepts log entries from other nodes

= Replicates them on other servers

= Tells nodes when safe to apply log entries to their state
machines (KV store)

= Leader can make decisions without consulting others
= Data flows from leader - to nodes
= When leader fails, a new leader is elected

TCSS558: Applied Distributed Computing [Fall 2017]

118.13
Institute of Technology, University of Washington - Tacoma

December 5, 2017

RAFT BASICS - 2

m Server states: leader, (*)follower, candidate
= (*) - initial state of every node is follower
® Nodes redirect all requests to the leader

®m Candidate server in a leader election
= Server with most votes wins election, becomes leader
= Other nodes become followers

= Each candidate sponsors its own election, and solicits
votes

= More than one candidate can be conducting an election at
the same time

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.14
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.7

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

times out,
starts election

{

starts up

RAFT ELECTION: NODE STATES

times out,
new election

receives votes from
majority of servers

Y

Follower

discovers current
leader or new term

= Follower
= Candidate
= Leader

Candidate

Leader

discovers server
with higher term

December 5, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L18.15

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

eurrentTerm latest term server has seen (mitialized o 0
on first boot, increases monotonically)

votedFor candidateld that recerved vote in current
term {(or null if none)

log] Iog entries; each enfry contams command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:

commillndex index of highest log extry known to be
committed (initializad to 0, incxeases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increazes
monotonically)

Volatile state on leaders:

(Remitialized after elaction)

nextIndex[] for aach server, index of the next log entry
to send to that server (mitiahzed to leader
last log index = 1)

‘matchIndex]] for each server, index of highest log entry
known to be replicated on server
{initizlized to 0, increases monotomically)

AppendEntries RPC

TInveked by leader to replicate log entries (§3.3); also used as

heartbeat (35.2).

Arguments:

term leader’s term

leaderld 30 follower can redirect clients

prevLogindex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndes entry

entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commatindex

Results:
term currentTerm_ for leader to update itself
success wrue if follower contained entry matching

prevLogindex and prevLogTerm

Receiver implementation:

1. Reply false if term = currentTem (§5.1)

2. Reply false if log doesn’t contain an entry t prevLoglndex
whose term matches prevLogTerm (§5.3)

3. Ifan existing entry condlicts with 3 new one (same index
‘but different terms), delete the existing entry and all that
fallow 1t (53.3)

4. Append any new entriss not abeady in the log

1f leaderCommit - commitindex, set commitindex =

min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate’s term

candidateld candidate requesting vote
lastLoglndex index of candidate’s last log entry (55.4)

lastLogTerm term of candidate’s last log entry (§5.4)
Resuits:
term curreniTerm, for candidate to update itself

voteGranted true means candidate received vote

Receiver implementation:

1. Reply false if term = currentTerm (55.1)

2. IfvotedFor iz null or candidateld, and candidate’s log 12 at
least 33 up-to-date 2z receiver's loz, zrant vots (§5.2, §5.4)

Rules for Serv

All Servers:

+ If commitlndex > lastApplied: increment lastApplied apply
Tog[lastApplied] to state machine (35.3)

+ IERPC request or response contains term T = currentTem:
set currentTerm = T, convert to follower (§3.1)

Followers (§5.2):

* Respond to RPC: from candidates and leaders

* Ifelection imeout elapses withont receiving AppendEntries
RPC from current leader or granting vots to candidate
convert to candidate

Candidates (§5.2):
* On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
* Send RequestVote RPC: to all other servers
* Ifvoies received from majority of servers: become leader
* If AppendEnmes RPC received from new leader: convert to
follower
+ Ifelection timeout elapses: start new election

Leaders:
* Upon election: send initial empty AppendEntries RFCs
(beartbeat) to each server; repeat during idle periods to
‘prevent slaction timsouts (§3.2)
* If command received from client. append eniry to local log,
respond after entry applied to state machine (35.3)
+ Tflasct log index = nextIndex for a follower: sand
AppendEntries RPC with log enfries starting at rextlndex
* Ifsuccessful: update nextIndex and matchIndex for
follower (§5.3)
* If AppendEntries fails because of log inconsistency:
decrement nextTndex and refry (§5.3)
* Ifthers existz an N such that N > commitIndex, 2 majonity
of matchIndexfi] = N, and log[N].term = currentTerm:
set commitindex = N (§5.3. §5.4).

Slides by Wes J. Lloyd

December 5, 2017

L18.8

TCSS 558: Applied Distributed Computing [Fall 2017] December 5, 2017
Institute of Technology, UW-Tacoma

TERMS

= Raft divides time into TERMS of arbitrary length
B Terms are numbered with consecutive integers
® Terms start with an election (term # is incremented)

m |f election results in a SPLIT VOTE, term ends, and a new
term is started with an election

® There is only (1) Leader in any given term
® Terms act as a logical clock

® Each server stores current term number
B Terms are exchanged in communication

TCSS558: Applied Distributed Computing [Fall 2017]

118.17
Institute of Technology, University of Washington - Tacoma

December 5, 2017

TERMS - 2

= |f a larger term # is found, then all nodes update term #
and defer to the term’s leader

= |[f candidate or leader finds its term is out of date, will
immediately become a follower node

m |f server receives request with stale term #, then request
is rejected

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.18
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.9

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

RAFT METHODS

® Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

= RequestVote()

® |nitiated by candidates during an election

= AppendEntriesToLog()

® Sent by leaders to follower nodes at regular intervals
®m Used as a heartbeat to maintain leadership

® Provides log updates to nodes

® Performs consistency checks

® Commands are retried if no response after timeout

B Commands sent in parallel using multiple threads
(performance)

TCSS558: Applied Distributed Computing [Fall 2017]

118.19
Institute of Technology, University of Washington - Tacoma

December 5, 2017

RAFT ELECTIONS

® Every node has a randomized ElectionTimeout value

= If a node (follower) receives no heartbeat from the leader
after the timeout, node expects the leader has gone offline

= NEW ELECTION:

® (1) The node begins a new election as candidate, sending
RequestVote() to every node in the system
= Candidate immediately votes for itself
= RequestVote() sent in parallel to all nodes

m (2) Follower votes for first candidate a RequestVote() is
received from only if the candidate’s log is at least (or more)
up-to-date
= Inspect candidate provided last log index and log term values

® (3) If candidate obtains a majority of the votes (determined by
calculating majority total from node directory) it wins the
election!!!

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.20
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.10

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

ELECTIONS - 2

= Election outcomes

= A - Candidate wins

® B - Another server establishes leadership
B C - There is no winner

m Servers vote for only one candidate
® Only (1) winner per election
® Only (1) leader per term

= “Election safety property”

® New leader sends empty heartbeat to nodes to establish
leadership

TCSS558: Applied Distributed Computing [Fall 2017]

118.21
Institute of Technology, University of Washington - Tacoma

December 5, 2017

ELECTIONS - 3

® While a candidate waits for votes, it may receive an
AppendEntries() call from another leader

= |f the leader’s term >= candidate’s term then the candidate
concedes the election and returns to Follower state

® |f multiple elections, then no one candidate may receive a
majority vote. One election times out first based on a
randomized-election-timeout value

= Random timeout values help spread out the candidates to prevent
endless looping

Election Election
= KEY IDEA: by using random timeouts, Ca"d'da'ea Cca"d'datea

when no majority vote occurs, a random meout Timeout
node times out first and starts a new election before anyone
else by incrementing the term #, and sending RequestVote()

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.22
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.11

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

ELECTIONS - 4

B Randomized timeout values should be reset every time

® Paper suggests a min timeout of 150ms, and max of
300ms

® Timeout should be “an order of magnitude” greater (10x)
than the node-to-node communication latency

= I’'m presently using 500 - 1000ms

® Can experiment with different values

TCSS558: Applied Distributed Computing [Fall 2017]

118.23
Institute of Technology, University of Washington - Tacoma

December 5, 2017

ELECTIONS -5

® RAFT enforces leader logs to be up-to-date during an election
" Nodes ONLY vote for a candidate *if* :
m Candidate local term and log number >= follower

® Candidate’s log *must be* at least as up-to-date as the
majority of follower’s log

= MORE up-to-date log is defined as log with:

® Higher term # in last log entry

®-—-0OR --

® When term of last log entries match, log with more entires
m E.8. longer log

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.24
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.12

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TYPICAL ELECTION SEQUENCE

term 1 term 2 13 term 4
4 4 4 -
\ terms

election normal
operation

no emerging
leader
® Term 1: normal election
® Term 2: normal election
® Term 3: SPLIT VOTE, no leader emerges, election times out
= Term 4: normal election

TCSS558: Applied Distributed Computing [Fall 2017]

118.25
Institute of Technology, University of Washington - Tacoma

December 5, 2017

RAFT SAFETY

Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term. then the logs are identical in all entries up
through the given index. §5.3

Leader Completeness: if a log entry is commitled in a
given term, then that entry will be present in the logs of
the leaders for all higher-numbered terms. §3.4

State Machine Safety: if a server has applied a log entry at
a given index to its state machine, no other server will ever
apply a different log entry for the same index. §5.4.3

® Raft guarantees that each of these properties is always true

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.26
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.13

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

LOG REPLICATION

® Leader receives commands forwarded from followers

= Ways logs can diverge
® (a) Follower may be missing entries present on leader

® (b) Follower may have extra entries not present on the
leader

® (c) Both A and B

= Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

= Raft leaders FORCE followers logs to match its own

= Conflicting entries in follower logs are overwritten

TCSS558: Applied Distributed Computing [Fall 2017]

118.27
Institute of Technology, University of Washington - Tacoma

December 5, 2017

LOG REPLICATION - 2

" FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

= AKin to Lamport’s Clocks

= Possible follower states at start of new term
® (a) Missing entries

® (b) Extra uncommitted entries

E (c) Both

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.28
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.14

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

RAFT - LOG REPLICATION ALGORITHM

= Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)
3. Sends AppendEntries() to followers

m | eader tracks index of its highest committed log entry
® Provides this index to followers in AppendEntries() RPC

m Leader commit to state machine:

® (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

TCSS558: Applied Distributed Computing [Fall 2017]

December.5, 2017 Institute of Technology, University of Washington - Tacoma

L18.29

LOG REPLICATION ALGORITHM - 2

® Synchronizing follower logs
m (2) If follower rejects AppendEntries() then leader decrements
its “follower-nextindex” by one, and retries AppendEntries().

= “follower-nextindex” tracks which logs entries are sent to the
follower for each AppendEntries() RPC call

® L oop continues until leader walks back its “follower-
nextlndex” until it matches what is committed at the follower
= Follower has a commitindex
= Tracks 1st phase of a “two-phase” commit
= Follower has a lastApplied index
= Tracks 2"d phase of “two-phase” commit
® Once leader matches follower-nextindex, the follower accepts
the AppendEntries() RPC, and writes data to its log
= Conflicting log entries are overwritten

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.30
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.15

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

LOG REPLICATION ALGORITHM - 3

® Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

= Raft handles follower node failure by retrying
communication indefinitely

= |[f crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

TCSS558: Applied Distributed Computing [Fall 2017]

118.31
Institute of Technology, University of Washington - Tacoma

December 5, 2017

COMMITTING LOG ENTRIES

= Each node keeps a commitindex and lastApplied index variable

= PHASE |

® Leader: when log message replicated at a majority of follower
logs (not state machines) **- described next slide

®m Leader increments its commitindex

® Followers set commitindex to
Min (leader-commitindex , index of last new log entry)

If leaderCommit > commitIndex, set commitIndex =
= PHASE Il min(leaderCommit, index of last new entry)

® For any node (follower, leader):

® |f commitindex > lastApplied
. If commitIndex > lastApplied: increment lastApplied, apply|
* Increment IaStApp“ed by 1 log[lastApplied] to state machine (§5.3)

= commit log[lastApplied] to state machine (kv-store)

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 118.32
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.16

TCSS 558: Applied Distributed Computing [Fall 2017] December 5, 2017
Institute of Technology, UW-Tacoma

UPDATING COMMIT-INDEX OF LEADER

+ If there exists an N such that N > commitIndex, a majority
of matchIndex[i] > N, and log[N].term == currentTerm:

set commitIndex = N (§5.3, §5.4).

® How leader determines when to update it’s commitindex

®m Use a majority consensus of what has been committed at
follower logs

® Leader maintains follower state arrays:

nextindex[]: index of next log entry to send to follower

matchilndex[]: index of highest log entry known to be
replicated (to log) at follower

Find N, such that N > commitindex,.,qe,
= and a majority of matchindex[i] > N (from followers)

and log_entry . 4., [N].term == currentTerm, 4.,
® then set commitindex,. 4y = N

TCSS558: Applied Distributed Computing [Fall 2017]

118.33
Institute of Technology, University of Washington - Tacoma

December 5, 2017

RAFT CLUSTER MEMBERSHIP - A3

m Cluster discovery performed at startup
® Use any method:

= Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

B One membership is discovered, it can remain static/fixed
® Nodes can go offline, come back online

B One a common configuration is propagated across the
system, it can not be changed without restarting

B RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.34
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd L18.17

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

A3 RAFT SIMPLIFICATIONS

® RequestVote() can be single threaded
= AppendEntries() probably should have one thread per follower

® TCP client catch exceptions:
= |OExcpetion - newSocket()
= |OException - getOutputStream()
= |OException - getlnputStream()
= Leader should catch exceptions, and retry requests indefinitely
= Use socket method .setSoTimeout() to set a socket timeout in MS

® Node directory should generate and track nodelDs
"Eg.1,2,3,4,..n

® Node directory should retrieve a node by ID, or IP/PORT

TCSS558: Applied Distributed Computing [Fall 2017]

118.35
Institute of Technology, University of Washington - Tacoma

December 5, 2017

A3 RAFT SIMPLIFICATIONS - 2

m Leader election: if using a single thread for election candidate

should retry RequestVote() up to 10 times for a follower then
give-up and move to next follower

® Instead of pushing data to followers when put() or del() is
received by leader, can wait until next scheduled heartbeat to
follower

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L18.36
Institute of Technology, University of Washington - Tacoma

December 5, 2017

Slides by Wes J. Lloyd

December 5, 2017

L18.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]

DecembeS 1200 Institute of Technology, University of Washington - Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

December 5, 2017

L18.19

