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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

Assignment #3 Questions

 Feedback from 11/28

Ch. 6 – Coordination
Distributed mutual exclusion

Election algorithms

Raft Consensus Algorithm
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 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 Raft Paper
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CHAPTER 6 - COORDINATION

 CENTRALIZED MUTUAL EXCLUSION

 In what node does the coordinator reside?

 I interpret this question as, how do we select (or elect) a 
coordinator node?

 Often election algorithms arbitrarily choose any node to 
be coordinator

We will cover election algorithms today in class

 However, sometimes, it may be beneficial to elect a 
coordinator that has specific resources available (network 
capacity, memory, CPU capacity, access to special data)
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 CENTRALIZED MUTUAL EXCLUSION

 Does coordinator need continuous communication with the 
node using the shared resource?
 The network link between the central coordinator, and the node 

accessing the share resource must not be broken

 If the network link fails, the user may be done with the resource, but 
has no way of notifying the coordinator (or the distributed system)

 In this case, it appears as if the node is still using the resource… 
potentially forever =( 

 How does the coordinator know if a particular node has 
failed?
 The centralized coordinator should probably “ping” nodes accessing 

the shared resource periodically.  If the “pings” are not returned, 
then potentially the lock should be released
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FEEDBACK - 2

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION
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 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

Algorithms

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote: 
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give 
permission to access a resource (because it is busy) it will 
inform the requester
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DECENTRALIZED ALGORITHM
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 Assumption #2: When a coordinator crashes, it recovers 
quickly, but wil l  have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 
permission to the shared resource, and on recovery it errantly 
grants permission again

 Hope: if coordinator crashes, upon recovery , the node granted 
access to the resource has already f inished before the 
restored coordinator grants access again . .  .
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DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of 
violating correctness is so low it can be neglected in 
comparison to other types of failure

 Leverage that a new node must obtain a majority vote to 
access resource, which requires t ime
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
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 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 
process can poll  to gain access again with a random delay 
(known as back-of f)

 If too many nodes compete to gain access to a resource, 
majority vote can lead to low resource util ization

 No one can achieve majority vote to obtain access to the 
shared resource

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION 
ALGORITHMS

L17.12
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 Many distr ibuted systems require one process to act as a 
coordinator, init iator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements 

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all  nodes agree on a 
coordinator
November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L17.13

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest 
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems
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ELECTION ALGORITHMS



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.8

 When any process notices the coordinator is no longer 
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher 

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes 

coordinator
3. If one of the higher-ups answers, it takes over and runs the 

election.
 When the higher numbered process receives an ELECTION 

message from a lower-numbered colleague, it responds 
with “OK”, indicating it’s alive, and it takes over the 
election.
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BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining 
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a 
message stating it is star ting as the coordinator.

 If a higher numbered node that was previously down comes 
back up, it holds an election, and ultimately takes over the 
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.16

BULLY ALGORITHM - 2
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BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4 
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and 
6 each hold an 
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins 
and tells everyone

 Every node knows who is participating in the distributed 
system
 Each node has a group membership directory

 First process to notice the leader is of fline launches a new 
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”
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BULLY SUMMARY
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 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator 
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node 
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own 
identifier in the active node l ist.  Message is changed to 
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator
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RING ALGORITHM

 Two nodes star t election at the same time: P3 and P6

 P3  sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated is  an act ive node l ist

 Each node adds itself to the act ive node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the highest ID
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RING: MULTIPLE ELECTION EXAMPLE
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 Assumptions made by traditional election algorithms not 
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad 
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes 
and partitioning networks.

 Best leader can be elected, rather than just a random one
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ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) star ts the e lection by sending an ELECTION 
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors,  but not to parent

4. Node (R), receives message, designates (Q) as parent,  and 
spreads ELECTION message, but not to  parent

5. Neighbors that have already selected a parent immediately 
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report 

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life 
and resource capacity

6. Q eventually  acknowledges the ELECTION message sent by P, and 
also indicates the most eligible node (based on battery & 
resource capacity)
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VASUDEVAN ET AL. WIRELESS ELECTION
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Node [A] 
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then 
facil itates Node H
becoming leader
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WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique 
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the 
network partitions, and when nodes join and leave
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WIRELESS ELECTION - 3



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.13

 Large systems often require several nodes to serve as 
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must 
be low

2. Super peers should be evenly distributed across the 
overlay network (ensures proper load balancing, 
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes
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ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier 
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per 

node
 Required number of super peers is 2(k – m) ▪ N, where N is 

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes
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ELECTIONS FOR DHT BASED SYSTEMS
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 Given an overlay network, the idea is to position 
superpeers throughout the network so they are evenly 
disbursed 

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”.  Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay 
network
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SUPER PEERS IN 
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and 
force information across the network

 If forces acting on a node with a token exceed a threshold, 
token is moved away

 Once nodes hold token for awhile they become superpeers
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OVERLAY TOKEN DISTRIBUTION
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RAFT CONSENSUS

L17.29

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for 
consensus

 Single decree Paxos: supports reaching agreement on a single 
decision
 To agree on contents of a single log entry 

 Multiple decree Paxos: use multiple instances of the protocol 
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct”  (e.g. via proofs)
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CONSENSUS IN DISTRIBUTED SYSTEMS
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 As reported by the inventors of RAFT . .  .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users 
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers
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PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical 
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi -Paxos description has missing detail
 Mostly focused on single decree
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PROBLEMS WITH PAXOS
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 Other attempts to flesh out details are divergent from 
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building 
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential 
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions
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PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each 
develops a different architecture for solving the difficult 
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about 
correctness, but challenging to use for implementing real 
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems 
Demystified

 Observation: significant gaps between the description of 
the algorithm and the needs of a real-world system, result 
in final systems based on divergent, unproven protocols
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RESULTING PROBLEMS
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 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in 
real world scenarios
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DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems: 

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates 
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no 
other server can apply a different log entry for the same 
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way
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DESIGN GOALS FOR RAFT - 2
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 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent 
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DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state 
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected
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RAFT ALGORITHM BASICS
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 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits 
votes

More than one candidate can be conducting an election at 
the same time
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RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new 
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication
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TERMS
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 If a larger term # is found, then all nodes update term # 
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will 
immediately become a follower node

 If server receives request with stale term #, then request 
is rejected
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TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP 
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads 

(performance)
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RAFT METHODS
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QUESTIONS

November 30, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L17.43

EXTRA SLIDES

44


