
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.1

Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

Assignment #3 Questions

 Feedback from 11/28

Ch. 6 – Coordination
Distributed mutual exclusion

Election algorithms

Raft Consensus Algorithm

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.2

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 Raft Paper

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.3

CHAPTER 6 - COORDINATION

 CENTRALIZED MUTUAL EXCLUSION

 In what node does the coordinator reside?

 I interpret this question as, how do we select (or elect) a
coordinator node?

 Often election algorithms arbitrarily choose any node to
be coordinator

We will cover election algorithms today in class

 However, sometimes, it may be beneficial to elect a
coordinator that has specific resources available (network
capacity, memory, CPU capacity, access to special data)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.4

FEEDBACK FROM 11/28

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.3

 CENTRALIZED MUTUAL EXCLUSION

 Does coordinator need continuous communication with the
node using the shared resource?
 The network link between the central coordinator, and the node

accessing the share resource must not be broken

 If the network link fails, the user may be done with the resource, but
has no way of notifying the coordinator (or the distributed system)

 In this case, it appears as if the node is still using the resource…
potentially forever =(

 How does the coordinator know if a particular node has
failed?
 The centralized coordinator should probably “ping” nodes accessing

the shared resource periodically. If the “pings” are not returned,
then potentially the lock should be released

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.5

FEEDBACK - 2

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L17.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.4

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

Algorithms

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.7

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote:
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.8

DECENTRALIZED ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.5

 Assumption #2: When a coordinator crashes, it recovers
quickly, but wil l have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

 Hope: if coordinator crashes, upon recovery , the node granted
access to the resource has already f inished before the
restored coordinator grants access again . . .

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.9

DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of
violating correctness is so low it can be neglected in
comparison to other types of failure

 Leverage that a new node must obtain a majority vote to
access resource, which requires t ime

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.10

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.6

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-of f)

 If too many nodes compete to gain access to a resource,
majority vote can lead to low resource util ization

 No one can achieve majority vote to obtain access to the
shared resource

 Problem Solution detailed in [Lin et al. 2014]

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.11

DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION
ALGORITHMS

L17.12

1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.7

 Many distr ibuted systems require one process to act as a
coordinator, init iator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a
coordinator
November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L17.13

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.14

ELECTION ALGORITHMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.8

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes

coordinator
3. If one of the higher-ups answers, it takes over and runs the

election.
 When the higher numbered process receives an ELECTION

message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.15

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is star ting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.16

BULLY ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.9

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.17

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

 Every node knows who is participating in the distributed
system
 Each node has a group membership directory

 First process to notice the leader is of fline launches a new
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.18

BULLY SUMMARY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.10

 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node l ist. Message is changed to
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.19

RING ALGORITHM

 Two nodes star t election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated is an act ive node l ist

 Each node adds itself to the act ive node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the highest ID

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.20

RING: MULTIPLE ELECTION EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.11

 Assumptions made by traditional election algorithms not
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

 Best leader can be elected, rather than just a random one

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.21

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) star ts the e lection by sending an ELECTION
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message, but not to parent

5. Neighbors that have already selected a parent immediately
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.22

VASUDEVAN ET AL. WIRELESS ELECTION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.12

Node [A]
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facil itates Node H
becoming leader

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.23

WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.24

WIRELESS ELECTION - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.13

 Large systems often require several nodes to serve as
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must
be low

2. Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.25

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per

node
 Required number of super peers is 2(k – m) ▪ N, where N is

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.26

ELECTIONS FOR DHT BASED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.14

 Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay
network

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.27

SUPER PEERS IN
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and
force information across the network

 If forces acting on a node with a token exceed a threshold,
token is moved away

 Once nodes hold token for awhile they become superpeers

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.28

OVERLAY TOKEN DISTRIBUTION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.15

RAFT CONSENSUS

L17.29

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for
consensus

 Single decree Paxos: supports reaching agreement on a single
decision
 To agree on contents of a single log entry

 Multiple decree Paxos: use multiple instances of the protocol
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct” (e.g. via proofs)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.30

CONSENSUS IN DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.16

 As reported by the inventors of RAFT . . .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.31

PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi -Paxos description has missing detail
 Mostly focused on single decree

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.32

PROBLEMS WITH PAXOS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.17

 Other attempts to flesh out details are divergent from
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.33

PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each
develops a different architecture for solving the difficult
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about
correctness, but challenging to use for implementing real
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems
Demystified

 Observation: significant gaps between the description of
the algorithm and the needs of a real-world system, result
in final systems based on divergent, unproven protocols
November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L17.34

RESULTING PROBLEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.18

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.35

DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.36

DESIGN GOALS FOR RAFT - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.19

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.37

DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.38

RAFT ALGORITHM BASICS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.20

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.39

RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.40

TERMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.21

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.41

TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.42

RAFT METHODS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.22

QUESTIONS

November 30, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L17.43

EXTRA SLIDES

44

