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OBJECTIVES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 Raft Paper
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CHAPTER 6 - COORDINATION

 CENTRALIZED MUTUAL EXCLUSION

 In what node does the coordinator reside?

 I interpret this question as, how do we select (or elect) a 
coordinator node?

 Often election algorithms arbitrarily choose any node to 
be coordinator

We will cover election algorithms today in class

 However, sometimes, it may be beneficial to elect a 
coordinator that has specific resources available (network 
capacity, memory, CPU capacity, access to special data)
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FEEDBACK FROM 11/28

 CENTRALIZED MUTUAL EXCLUSION

 Does coordinator need continuous communication with the 
node us ing the shared resource?
 The network link between the central coordinator, and the node 

accessing the share resource must not be broken

 If the network link fails, the user may be done with the resource, but 
has no way of notifying the coordinator (or the distributed system)

 In this case, it appears as if the node is still using the resource… 
potentially forever =( 

 How does the coordinator know if  a particular node has 
failed?
 The centralized coordinator should probably “ping” nodes accessing 

the shared resource periodically.  If the “pings” are not returned, 
then potentially the lock should be released
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 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

Algorithms

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote: 
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give 
permission to access a resource (because it is busy) it will 
inform the requester
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DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers 
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 
permission to the shared resource, and on recovery it errantly 
grants permission again

 Hope: if coordinator crashes, upon recovery , the node granted 
access to the resource has already finished before the 
restored coordinator grants access again . . .
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DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of 
violating correctness is  so low it can be neglected in 
comparison to other types of failure

 Leverage that a new node must obtain a majority vote to 
access resource, which requires time
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 
process can poll to gain access again with a random delay 
(known as back-off)

 If too many nodes compete to gain access to a resource, 
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the 
shared resource

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION 
ALGORITHMS

L17.12
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 Many distributed systems require one process to act as a 
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements 

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a 
coordinator
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ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest 
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems
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ELECTION ALGORITHMS

 When any process notices the coordinator is no longer 
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher 

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes 

coordinator
3. If one of the higher-ups answers, it takes over and runs the 

election.
 When the higher numbered process receives an ELECTION 

message from a lower-numbered colleague, it responds 
with “OK”, indicating it’s alive, and it takes over the 
election.
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BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining 
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a 
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes 
back up, it holds an election, and ultimately takes over the 
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm
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BULLY ALGORITHM - 2
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BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4 
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and 
6 each hold an 
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins 
and tells everyone

 Every node knows who is participating in the distributed 
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new 
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”
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BULLY SUMMARY
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 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator 
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node 
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own 
identifier in the active node l ist .  Message is changed to 
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator
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RING ALGORITHM

 Two nodes start election at the same time: P3 and P6

 P3  sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated is an active node l ist

 Each node adds itself to the active node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the h ighest ID
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RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms not 
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad 
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes 
and partitioning networks.

 Best leader can be elected, rather than just a random one
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ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION 
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors,  but not to  parent

4. Node (R), receives message, designates (Q) as parent, and 
spreads ELECTION message, but not to  parent

5. Neighbors that have already selected a parent immediately 
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report 

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life 
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and 
also indicates the most eligible node (based on battery & 
resource capacity)
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VASUDEVAN ET AL. WIRELESS ELECTION

Node [A] 
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then 
facilitates Node H
becoming leader
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WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique 
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the 
network partitions, and when nodes join and leave
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WIRELESS ELECTION - 3
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 Large systems often require several nodes to serve as 
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must 
be low

2. Super peers should be evenly distributed across the 
overlay network (ensures proper load balancing, 
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes
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ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier 
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per 

node
 Required number of super peers is 2(k – m) ▪ N, where N is 

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes
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ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position 
superpeers throughout the network so they are evenly 
disbursed 

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”.  Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay 
network
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SUPER PEERS IN 
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and 
force information across the network

 If forces acting on a node with a token exceed a threshold, 
token is moved away

 Once nodes hold token for awhile they become superpeers
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OVERLAY TOKEN DISTRIBUTION

RAFT CONSENSUS

L17.29

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for 
consensus

 Single decree Paxos: supports reaching agreement on a single 
decision
 To agree on contents of a single log entry 

 Multiple decree Paxos: use multiple instances of the protocol 
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct”  (e.g. via proofs)
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CONSENSUS IN DISTRIBUTED SYSTEMS
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 As reported by the inventors of RAFT . .  .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users 
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers
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PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical 
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi-Paxos description has missing detail
 Mostly focused on single decree
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PROBLEMS WITH PAXOS

 Other attempts to flesh out details are divergent from 
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building 
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential 
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions
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PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each 
develops a different architecture for solving the difficult 
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about 
correctness, but challenging to use for implementing real 
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems 
Demystified

 Observation: significant gaps between the description of 
the algorithm and the needs of a real-world system, result 
in final systems based on divergent, unproven protocols
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RESULTING PROBLEMS

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in 
real world scenarios
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DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems: 

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates 
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no 
other server can apply a different log entry for the same 
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way
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DESIGN GOALS FOR RAFT - 2



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.7

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent 
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DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state 
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected
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RAFT ALGORITHM BASICS

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits 
votes

More than one candidate can be conducting an election at 
the same time
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RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new 
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication
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TERMS

 If a larger term # is found, then all nodes update term # 
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will 
immediately become a follower node

 If server receives request with stale term #, then request 
is rejected
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TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP 
stream by marshalling data inputs/outputs

 RequestVote()
 Initiated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to fo llower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads 

(performance)
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RAFT METHODS
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QUESTIONS
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