
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.1

Coordination

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

Assignment #3 Questions

 Feedback from 11/28

Ch. 6 – Coordination
Distributed mutual exclusion

 Election algorithms

Raft Consensus Algorithm

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.2

OBJECTIVES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 Raft Paper

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.3

CHAPTER 6 - COORDINATION

 CENTRALIZED MUTUAL EXCLUSION

 In what node does the coordinator reside?

 I interpret this question as, how do we select (or elect) a
coordinator node?

 Often election algorithms arbitrarily choose any node to
be coordinator

We will cover election algorithms today in class

 However, sometimes, it may be beneficial to elect a
coordinator that has specific resources available (network
capacity, memory, CPU capacity, access to special data)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.4

FEEDBACK FROM 11/28

 CENTRALIZED MUTUAL EXCLUSION

 Does coordinator need continuous communication with the
node us ing the shared resource?
 The network link between the central coordinator, and the node

accessing the share resource must not be broken

 If the network link fails, the user may be done with the resource, but
has no way of notifying the coordinator (or the distributed system)

 In this case, it appears as if the node is still using the resource…
potentially forever =(

 How does the coordinator know if a particular node has
failed?
 The centralized coordinator should probably “ping” nodes accessing

the shared resource periodically. If the “pings” are not returned,
then potentially the lock should be released

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.5

FEEDBACK - 2

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L17.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.2

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

Algorithms

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.7

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote:
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.8

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

 Hope: if coordinator crashes, upon recovery , the node granted
access to the resource has already finished before the
restored coordinator grants access again . . .

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.9

DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of
violating correctness is so low it can be neglected in
comparison to other types of failure

 Leverage that a new node must obtain a majority vote to
access resource, which requires time

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.10

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

 If too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the
shared resource

 Problem Solution detailed in [Lin et al. 2014]

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.11

DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION
ALGORITHMS

L17.12

1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.3

 Many distributed systems require one process to act as a
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a
coordinator
November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L17.13

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.14

ELECTION ALGORITHMS

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes

coordinator
3. If one of the higher-ups answers, it takes over and runs the

election.
 When the higher numbered process receives an ELECTION

message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.15

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.16

BULLY ALGORITHM - 2

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.17

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

 Every node knows who is participating in the distributed
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.18

BULLY SUMMARY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.4

 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node l ist . Message is changed to
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.19

RING ALGORITHM

 Two nodes start election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated is an active node l ist

 Each node adds itself to the active node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the h ighest ID

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.20

RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms not
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

 Best leader can be elected, rather than just a random one

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.21

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message, but not to parent

5. Neighbors that have already selected a parent immediately
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.22

VASUDEVAN ET AL. WIRELESS ELECTION

Node [A]
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facilitates Node H
becoming leader

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.23

WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.24

WIRELESS ELECTION - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.5

 Large systems often require several nodes to serve as
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must
be low

2. Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.25

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per

node
 Required number of super peers is 2(k – m) ▪ N, where N is

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.26

ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay
network

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.27

SUPER PEERS IN
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and
force information across the network

 If forces acting on a node with a token exceed a threshold,
token is moved away

 Once nodes hold token for awhile they become superpeers

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.28

OVERLAY TOKEN DISTRIBUTION

RAFT CONSENSUS

L17.29

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for
consensus

 Single decree Paxos: supports reaching agreement on a single
decision
 To agree on contents of a single log entry

 Multiple decree Paxos: use multiple instances of the protocol
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct” (e.g. via proofs)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.30

CONSENSUS IN DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.6

 As reported by the inventors of RAFT . . .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.31

PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi-Paxos description has missing detail
 Mostly focused on single decree

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.32

PROBLEMS WITH PAXOS

 Other attempts to flesh out details are divergent from
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.33

PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each
develops a different architecture for solving the difficult
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about
correctness, but challenging to use for implementing real
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems
Demystified

 Observation: significant gaps between the description of
the algorithm and the needs of a real-world system, result
in final systems based on divergent, unproven protocols
November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L17.34

RESULTING PROBLEMS

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.35

DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.36

DESIGN GOALS FOR RAFT - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.7

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.37

DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader to nodes

When leader fails, a new leader is elected

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.38

RAFT ALGORITHM BASICS

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.39

RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.40

TERMS

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.41

TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Initiated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to fo llower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L17.42

RAFT METHODS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 30, 2017

Slides by Wes J. Lloyd L17.8

QUESTIONS

November 30, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L17.43

EXTRA SLIDES

44

