
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.1

Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

 Feedback from 11/21

Assignment #3 / Final Exam

Ch. 6 – Coordination
Vector clocks

Distributed mutual exclusion

Raft Consensus Algorithm

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.2

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.3

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL
CLOCKS

L16.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.3

 Three processes each with local clocks

 Lamport’s algorithm corrects their values

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.5

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.6

LOGICAL CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.4

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.7

TOTAL-ORDERED MULTICASTING

DB1 DB2

November 28, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.5

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

 Events can be applied “ in order” to each (distributed)
replicated state machine (RSM)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.9

TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.10

VECTOR CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.6

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.11

WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock H(q2) = (3,2)

 Each entry corresponds to the last event at the process

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.12

VECTOR CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.7

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.13

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.14

VECTOR CLOCKS - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.8

 Local clock is underlined

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.15

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.16

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.9

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with cer tainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.17

VECTOR CLOCKS - 4

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.10

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

 Token-based algorithms:

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.19

DISTRIBUTED MUTUAL EXCLUSION

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.20

TOKEN-RING ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.11

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.21

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes
before first acquiring access to the resource

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar to
how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.22

DISTRIBUTED MUTUAL EXCLUSION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.12

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.23

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.24

CENTRALIZED MUTUAL EXCLUSION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.13

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.25

DISTRIBUTED ALGORITHM

 When each node receives a request message they will :

1. Say OK (i f the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (i f node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
l ist of the distributed system

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.26

DISTRIBUTED ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.14

 If Node 0 and Node 2 simultaneously request access

 Node 0’s t ime stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Notice that Node 1 also grants Node 2 permission

 In case of confl ict, lowest t imestamp wins!

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.27

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does
not respond

 Lack of response can be confused with failure

 Solution: When node receives request for resource it is
accessing, always send a reply either granting or denying
permission (ACK)

 Enables requester to determine when nodes have died

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.28

CHALLENGES WITH
DISTRIBUTED ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.15

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.29

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

QUESTIONS

November 28, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L16.30

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.16

EXTRA SLIDES

31

