
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.1

Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

 Feedback from 11/21

Assignment #3 / Final Exam

Ch. 6 – Coordination
Vector clocks

Distributed mutual exclusion

Raft Consensus Algorithm

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.2

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.3

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL
CLOCKS

L16.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.3

 Three processes each with local clocks

 Lamport’s algorithm corrects their values

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.5

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.6

LOGICAL CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.4

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.7

TOTAL-ORDERED MULTICASTING

DB1 DB2

November 28, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.5

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

 Events can be applied “ in order” to each (distributed)
replicated state machine (RSM)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.9

TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.10

VECTOR CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.6

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.11

WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.12

VECTOR CLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.7

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.13

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.14

VECTOR CLOCKS - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.8

 Local clock is underlined

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.15

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.16

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.9

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with cer tainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.17

VECTOR CLOCKS - 4

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.10

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

 Token-based algorithms:

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.19

DISTRIBUTED MUTUAL EXCLUSION

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.20

TOKEN-RING ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.11

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.21

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes
before first acquiring access to the resource

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar to
how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.22

DISTRIBUTED MUTUAL EXCLUSION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.12

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.23

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.24

CENTRALIZED MUTUAL EXCLUSION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.13

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.25

DISTRIBUTED ALGORITHM

 When each node receives a request message they will :

1. Say OK (i f the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (i f node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
l ist of the distributed system

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.26

DISTRIBUTED ALGORITHM - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.14

 If Node 0 and Node 2 simultaneously request access

 Node 0’s t ime stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Notice that Node 1 also grants Node 2 permission

 In case of confl ict, lowest t imestamp wins!

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.27

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does
not respond

 Lack of response can be confused with failure

 Solution: When node receives request for resource it is
accessing, always send a reply either granting or denying
permission (ACK)

 Enables requester to determine when nodes have died

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.28

CHALLENGES WITH
DISTRIBUTED ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.15

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.29

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

QUESTIONS

November 28, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L16.30

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 28, 2017

Slides by Wes J. Lloyd L16.16

EXTRA SLIDES

31

