TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Coordination

Wes J. Lloyd - EEEEn

Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Assignment #2 Questions
= Feedback from 11/21
m Assignment #3 / Final Exam

®Ch. 6 - Coordination
=Vector clocks
= Distributed mutual exclusion
= Raft Consensus Algorithm

TCSS558: Applied Distributed Computing [Fall 2017]

November 28, 2017 Institute of Technology, University of Washington - Tacoma

L16.2

Slides by Wes J. Lloyd

November 28, 2017

L16.1

TCSS 558: Applied Distributed Computing [Fall 2017] November 28, 2017
Institute of Technology, UW-Tacoma

CHAPTER 6 - COORDINATION

® 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
® 6.2 Logical clocks

= Lamport clocks

= Vector clocks
® 6.3 Mutual exclusion
® 6.4 Election algorithms
® 6.6 Distributed event matching (light)
® 6.7 Gossip-based coordination (light)

TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma 1163

November 28, 2017

(1,00} (20.00 310 (4.1.0) (5121 (6,1.2) (7.1.2)

P 0
o a b dw

f g L3

‘010 /220 © " 1632)

'(&ETJ

CH. 6.2: LOGICAL
CLOCKS

Slides by Wes J. Lloyd L16.2

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

LOGICAL CLOCKS - 4

® Three processes each with local clocks
®m Lamport’s algorithm corrects their values

P. Fs Py B P, P,
(0] [0 [0 0] (0] [0
6l m [8 10 "6 ~m, [§ 10
7| M 20 T Mg 20
2] __E%‘_‘__ﬂ‘ﬁ?_ 18 g, (S0
2_4__ __:_3_?_ 49 2_4 _:_3__2__ P adjusts _4_q
0 40 50 30 40 its clock |50
36 48 60 36 ’ 48 60
------ - P, adjustsI——
42 Sl |70 B sl [0
48 64 80 A48 89 80
e 77 90 20 | %0
60 80 100 76| 185 | 1100

TCSS558: Applied Distributed Computing [Fall 2017]
NouembenZE 017 Institute ofr‘Jl'ch:noltleg\:,l ljln(ievers‘i)tr:l‘rc?fJ wagshirigton - Tacoma L1635

LOGICAL CLOCKS

P, 2 2 P, P P

| = i 8 ot 3 { 2 |

Events: 5 5 . =l T ;
6:PisendmitoP2 [s\m [3 [0 Sk [8] | [0
16: P2 receives m1 _1_2___1@_ 012 6 20

) 18 Ad~m, [30 18 A~m |30
40: P3 receives m2 30 4 50 30 2 oo, 150
60: P3 sends m3 to P2 36 48 60 36]p agiy s 48 60
56: P2 i 3] E 10

|- fecelves m 6 __Au TR/ | [}
56: P2 clock reset=61 54|4°m 72 9 704« m |77 90
64: P2 sends m4 to P1 60 80 100 76] |85] 100
54: P1 receives m4
70: P1 clock reset=70

TCSS558: Applied Distributed C ting [Fall 2017]
November 28, 2017 Institute of?I'ZCI:nOI(I)Sg;,I Jn?versci’tlyzl; wagshiigton - Tacoma L16.6

Slides by Wes J. Lloyd

November 28, 2017

L16.3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TOTAL-ORDERED MULTICASTING

= Consider concurrent updates to a replicated database
® Communication latency between DB1 and DB2 is 250ms

% Update1 Update 2 ,%

Replicated database

Update 1is Update 2 is
performed before performed before
update 2 update 1

= |nitial Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

® Total Ordered Multicasting needed

TCSS558: Applied Distributed Computing [Fall 2017] 1167

RorembenpRER2017 Institute of Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

- b Fis oy Ao N
Total Drdered mulhicashng my {195 PL, "ieo)
Lk"i\}lﬁ*t\ Cletks wWilh .«’h"]\..\nmlhw'U;;.V\t";\ IS - .1‘ . Ao
o Vi eBLoe Al iy (12 3 iy o (Wc(lrﬂ;)
L S W X AN
WD PRACEEAES W (DG\,'F‘“'F"‘ it ’fﬂ
p TumesTamp s

I
TR PN
AT wrEmRENT
HobES AT
n AR TME

2

i\vi“"“'"’j Jv\:um;-\l\‘ L3
pla ed in Rueves

fpdered By Timestump

PRoCE RS
O LAY

EacH PRactsS
HAE A LeCAL
2

Slides by Wes J. Lloyd

November 28, 2017

L16.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TOTAL-ORDERED MULTICASTING - 3

®m Can be used to provide replicated state machines (RSMs)
® Concept is to replicate event queues at each node

® (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

® Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

CEEEEEE o

Consensus Consensus Consensus State
';ll H;.Ilt u Machine
x x 1
b" B‘ h‘ v 2 | servers

Log Log Log
[xe8lye2[xet] | [x-3Tye2[xe-1] | [x3lye2[xe1]z86]

Pass
to other machines

TCSS558: Applied Distributed Computing [Fall 2017]

L16.9
Institute of Technology, University of Washington - Tacoma

November 28, 2017

VECTOR CLOCKS

® Lamport clocks don’t help to determine causal ordering of
messages

® Vector clocks capture causal histories and can be used as an
alternative

® What is causality?

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L16.10
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

WHAT IS CAUSALITY?

® Consider the messages:

P P, P;
[0 0 0

Flom & Ty
j:?:\“:ﬁ"{ m,__120
i) e (1
24 32 m, 40
E9 iG] aE
36 48 60
42 B4 |70
48 69 80
ol |77 %0
|76 85 100

®m P2 receives m1, and subsequently sends m3
= Causality: Sending m3 may depend on what’s contained in m1

®m P2 receives m2, receiving m2 is not related to receiving m1
m |s sending m3 causally dependent on receiving m2?

November 28, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.11

VECTOR CLOCKS

® Vector clocks keep track of causal history

= |f two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

B P sends messages to Q (event p3)
® Q previously performed event q1
® Q records arrival of message as q2

® Causal histories merged at Q H(q2)= {p1,p2,p3,91,92}

® Fortunately, can simply store history of last event,

as a vector clock 2> H(q2) = (3,2)

®m Each entry corresponds to the last event at the process

November 28, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.12

Slides by Wes J. Lloyd

November 28, 2017

L16.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

VECTOR CLOCKS - 2

(1,0) (2,0) (3,0)
—o—=»

c
m;
(0,1) (3,2)
P, o
®m Each process maintains a vector clock which
= Captures number of events at the local process (e.g. logical clock)
= Captures number of events at all other processes
® Causality is captured by:
= For each event at Pi, the vector clock (VC,) is incremented
= The msg is timestamped with VC;; and sending the msg is recorded
as a new event at P,
= P, adjusts its VC; choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCSS558: Applied Distributed Computing [Fall 2017]

116.13
Institute of Technology, University of Washington - Tacoma

November 28, 2017

VECTOR CLOCKS - 3

® Pj knows the # of events at Pi based on the timestamps of the
received message

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

® These events “may be causally dependent”

= [n other words: they may have been necessary for the
message(s) to be sent...

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L16.14
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.7

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

= Local clock is underlined CAUSALITY
=} L1 0) _(_ 1,0) 3 1,0) . 0
/ \ 4.30)
‘0. 1.0) (42,00
m-i
Ps
2.11) (4.3,2)
ts (my) ts(m,) ts(m,)<ts(m,) | ts(m,)>ts(m,) Conclusion
(2,4,0) (4,3,0) Yes No m2 may causally precede m4
RorembenpRER2017 :;Csst:stist’: :ol?r‘Jl'zlci:‘r::o[l)cijsgt\r(,ibljlr'f:ie\;jercs‘i)tr:l‘FcJJLmenagsE:iragti(l)wl—7 !I'acoma 1615

November 28, 2017

VECTOR CLOCKS EXAMPL

E-2

P. 110 L1D 310 4,10
m. m,
= (2 3 0)
2
(0,1.0)
m4
P
(231) (43.2)
ts (my) ts(my) ts(my)<ts(my) | ts(my)>ts(my,) Conclusion
(4,1,0) (2,3,0) No No m2 and m4 may conflict

" |s m4 causa

®m P3 can’t determine if m4 may be causally dependent on m2

lly dependent on m3 ?

November 28, 2017

L16.16

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L16.8

TCSS 558: Applied Distributed Computing [Fall 2017] November 28, 2017
Institute of Technology, UW-Tacoma

VECTOR CLOCKS - 4

= Disclaimer:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

m Vector clocks can help us suggest possible causality
= We never know for sure...

TCSS558: Applied Distributed Computing [Fall 2017]

NouembenZE 017 Institute of Technology, University of Washington - Tacoma

L16.17

Distributed
Mutual Exclusion
Algorithms

| Token-based H Hybrid | |Permission-b:sed|

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

Slides by Wes J. Lloyd L16.9

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

DISTRIBUTED MUTUAL EXCLUSION

® Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

= Token-based algorithms:
® Mutual exclusion by passing a “token” between nodes

= Nodes often organized in ring
®= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtain lock

® Avoids deadlock: easy to avoid

TCSS558: Applied Distributed Computing [Fall 2017]

116.19
Institute of Technology, University of Washington - Tacoma

November 28, 2017

TOKEN-RING ALGORITHM

® Construct overlay network
® Establish logical ring among nodes

W Token
(O—(D)—2—®)
De—)—(«—¥

® Single token circulated around the nodes of the network

® Node having token can access shared resource

® |If no node accesses resource, token is constantly circulated
around ring

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L16.20
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.10

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TOKEN-RING CHALLENGES

1. If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

= What is the difference between token being lost and a
node holding the token for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

= When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCSS558: Applied Distributed Computing [Fall 2017]

116.21
Institute of Technology, University of Washington - Tacoma

November 28, 2017

DISTRIBUTED MUTUAL EXCLUSION - 2

= Permission-based algorithms

® Processes must require permission from other processes
before first acquiring access to the resource

m Centralized algorithm

® Elect a single leader node to coordinate access to shared
resource(s)

® Manage mutual exclusion on a distributed system similar to
how it mutual exclusion is managed for a single system

® Nodes must all interact with leader to obtain “the lock”

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q 116.22
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.11

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator

K

\/ No response from coordinator

Reqguest | |O RRguesl
7 No reply
’_‘ Queue is @
) / empty
Coordinator
P, executes P, blocks

Release

P, finishes; P, executes

® When resource not available, coordinator can block the
requesting process, or respond with a reject message

® P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

B Requests granted permission fairly using FIFO queue
® Just three messages: (request, grant, release)

November 28, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

116.23

CENTRALIZED MUTUAL EXCLUSION - 2

E |[ssues

® Coordinator is a single point of failure
B Processes can’t distinguish dead coordinator from “permission

denied”

= No difference between CRASH and Block (for a long time)
® Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Benefits
= Simplicity:

Easy to implement compared to distributed alternatives

November 28, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L16.24

Slides by Wes J. Lloyd

November 28, 2017

L16.12

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

DISTRIBUTED ALGORITHM

® Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

® Package up resource request message (AKA Lock Request)
® Send to all nodes
® Include:

= Name of resource

= Process number

= Current (logical) time

® Assume messages are sent reliably
= No messages are lost

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

116.25
Institute of Technology, University of Washington - Tacoma

DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (if the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (if node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

® Requirement: every node must know the entire membership
list of the distributed system

November 28, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L16.26
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

November 28, 2017

L16.13

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

DISTRIBUTED ALGORITHM - 3

= |f Node O and Node 2 simultaneously request access
® Node O’s time stamp is lower (8) than Node 2 (12)

® Node 1 and Node 2 grant Node O access

= Notice that Node 1 also grants Node 2 permission

Accesses
resource

N .
o o @ Accesses

oK resource

® |n case of conflict, lowest timestamp wins!

TCSS558: Applied Distributed Computing [Fall 2017]

116.27
Institute of Technology, University of Washington - Tacoma

November 28, 2017

CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
® Where N = Number of Nodes in the system

= Problem: When node is accessing the resource, it does
not respond

= Lack of response can be confused with failure

= Solution: When node receives request for resource it is
accessing, always send a reply either granting or denying
permission (ACK)

= Enables requester to determine when nodes have died

TCSS558: Applied Distributed Computing [Fall 2017]

A A A q L16.28
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.14

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node
must maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
= This approach may not scale on resource-constrained systems

m Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
= Presumably any one node locking the resource prevents agreement

m Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change

TCSS558: Applied Distributed Computing [Fall 2017]

116.29
Institute of Technology, University of Washington - Tacoma

November 28, 2017

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

November 28, 2017

Slides by Wes J. Lloyd

November 28, 2017

L16.15

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

November 28, 2017

L16.16

