
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.1

Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #2 Questions

 Feedback from 11/16

Ch. 6 – Coordination
Clock synchronization

 Logical clocks, Lamport clocks

Vector clocks

Distributed mutual exclusion

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.2

 When using “Gossip” message flooding, is there a possibility
that a node is sent a message multiple times?
 YES

 Is this redundant and possibly inefficient
 YES

 How does NTP work in an ad-hoc system? (unstructured peer-
to-peer?)
We might have some nodes to be synced with atomic clocks
(or lower levels), but how can we make sure ALL nodes in the
system have access to the “synchronized” nodes

 NTP is UDP (time changes too quick to resend failed msgs)
 NTP typically operates in client/server mode (msgs sent to

specific IPs)
 Other modes include broadcast and multicast

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.3

FEEDBACK FROM 11/16

 What is the purpose of random graphs?
 Seem circular?

 Higher edge probability means more edges per node

 More edges per node means higher probability

 Does the number of rounds required for anti-entropy depend on edge
probability?
 YES, the probability graph depicts dif ferences between push, pull,

push/pull

 How is gossiping dif ferent from flooding?
 Very similar, gossiping is a way of “thinking about” message

interaction and developing the algorithsm

 What if you want to reintroduce an item that was previously
removed that has a death certificate?
 The death certificate would need to be deleted…

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.4

FEEDBACK - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.3

 Why are the clocks not synchronized on campus?

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.5

FEEDBACK - 3

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.6

CHAPTER 6 - COORDINATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.4

CH. 6.1: CLOCK
SYNCHRONIZATION

L15.7

How do we synchronize computer clocks with
real-world clocks?

How do we synchronize computer clocks with
each other?

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.8

COMPUTING: CLOCK CHALLENGES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.5

 UTC services: use radio and satellite signals to provide time
accuracy to 50ns

 Time servers: Server computers with UTC receivers that
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual t ime clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t: clocks on dif ferent machines gradually become
out of sync due to crystal imperfections, temperature
differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drift rate (): clock specifications include one

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.9

CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions,
after time t after synchronization, they may be 2 apart.

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of
time for servers

 Leverage distributed network
of time servers

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.10

CLOCK SYNCHRONIZATION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.6

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.11

NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.12

NTP - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.7

 Cannot set clocks backwards (recall “make” fi le example)
 Instead, temporari ly slow the progress of time to allow fast

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of t ime unti l synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp star t)

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.13

NTP - 3

 Berkeley time daemon server actively polls network to
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.14

BERKELEY ALGORITHM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.8

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider t ime spent waiting in
NIC for message to send
 Wireless network resource contention may force wait before message

even can be sent

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.15

CLOCK SYNCHRONIZATION
IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently
synchronizing clocks to save energy

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.16

REFERENCE BROADCAST
SYNCHRONIZATION (RBS)

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.9

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to
predict of fsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple l inear
regression to continuously refine a formula with coefficients
to predict time offsets:

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.17

REFERENCE BROADCAST
SYNCHRONIZATION (RBS) - 2

CH. 6.2: LOGICAL
CLOCKS

L15.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.10

 In distr ibuted systems, synchronizing to actual t ime may not be
required…

 It may be sufficient for every node to simply agree on a current
t ime (e.g. logical)

 Logical c locks provide a mechanism for captur ing chronological
and causal relationships in a distr ibuted system

 Think counters . . .

 Leslie Lampor t [1978] seminal paper showed that absolute clock
synchronization often is not required

 Processes simply need to agree on the order in which events occur

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.19

LOGICAL CLOCKS

 Happens-before relation

 AB: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
AB is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation:

 AB, BC, therefore AC

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.20

LOGICAL CLOCKS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.11

 If two events, say event X and event Y do not exchange
messages, not even via third parties, then XY and YX
can not be determined

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never
backward (decreasing)

 Corrections to t ime can be made by adding a positive value,
but never by subtracting one

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.21

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects their values

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.22

LOGICAL CLOCKS - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.12

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.23

LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, ts(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.24

LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.13

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.25

TOTAL-ORDERED MULTICASTING

DB1 DB2

November 21, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.14

 Each message timestamped with local logical clock of sender
 Multicast message is conceptually sent to the sender
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Process delivers messages to application only when message
at the head of the queue has been acknowledged by every
process in the system
November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L15.27

TOTAL-ORDERED MULTICASTING - 2

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

 Events can be applied “ in order” to each (distributed)
replicated state machine (RSM)

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.28

TOTAL-ORDERED MULTICASTING - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.15

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.29

VECTOR CLOCKS

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.30

WHAT IS CAUSALITY?

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.16

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.31

VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.32

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.17

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.33

VECTOR CLOCKS - 3

 Local clock is underlined

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.34

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.18

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

November 21, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L15.35

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

QUESTIONS

November 21, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L15.36

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 21, 2017

Slides by Wes J. Lloyd L15.19

EXTRA SLIDES

37

