
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.1

Communication &
Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Assignment #1 Questions
 Assignment #2
 Feedback from 11/14

 Ch. 4 – Communications
 Multicast communication

 Ch. 6 – Coordination
 Physical clocks
 Clock synchronization
 Logical clocks, Lamport clocks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.2

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.3

CHAPTER 4 - COMMUNICATION

 How multicasting is ef fected by overlay networks?

 Application-level multicasting leverages overlay networks

 Create adhoc overlay network

 Support communication between nodes involved in the
application

 Multicasting (e.g. zeromq, UDP) can leverage the network
overlay to propagate application level traffic to the nodes

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.4

FEEDBACK FROM 11/14

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.3

 Intermediate concurrent hash table in assignment #2:

 Chapter 8.5 Distributed Commit

Where should the intermediate concurrent hash table be
deployed?

What is our aim to add this data structure?

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.5

FEEDBACK - 2

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L14.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.4

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.7

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.8

NETWORK STRUCTURE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.5

 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.9

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.10

MULTICAST TREE METRICS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.6

 Stretch (Relative Delay Penalty RDP) for B to C routes:

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total time for
disseminating information

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.11

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 Tree: if only the leaf nodes are to receive the multicast
message, many intermediate nodes are involved

 Solution: construct an overlay network for each multicast
group

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.12

FLOOD-BASED MULTICASTING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.7

 When no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Probability Pedge that two nodes are joined

 Overlay will have: ½ * Pedge * N * (N-1) edges

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.13

RANDOM GRAPHS

 Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability of message spread (pflood)

 Throttles message flooding based on a probability

 Implementation needs to consider # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.14

PROBABILISTIC FLOODING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.8

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Hypercube: nodes forward only to higher dimension nodes

 N(1001) broadcast will only go to N(1011) and N(1000)

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions
of hypercube

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.15

MESSAGE FLOODING

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.16

GOSSIP BASED DATA DISSEMINATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.9

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.17

INFORMATION DISSEMINATION

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges messages updates

 Akin to random walk

 PULL: P only pulls in new updates from Q
 PUSH: P only pushes its own updates to Q
 TWO-WAY: P and Q send updates to each other

(i .e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull : better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better stil l

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.18

ANTI ENTROPY DISSEMINATION MODEL

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.10

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the i th round.

 For pull, push, and push-pull
based approaches:

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.19

ANTI ENTROPY EFFECTIVENESS

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.20

RUMOR SPREADING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.11

 Does not guarantee all nodes wil l be updated

 The fraction of nodes s, that remain susceptible is grows
relative to the probability that node P stops propagating when
finding a node already having the message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping 

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.21

RUMOR SPREADING - 2

 Taking network topology into account can help

 When gossiping, nodes connected to only a few other
nodes are more likely to be contacted

 Epidemic protocols assume:

 For gossiping nodes are randomly selected

 One node, can randomly select any other node in the
network

 Complete set of nodes is known to each member

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.22

DIRECTIONAL GOSSIPING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.12

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.23

REMOVING DATA

 For example:

 Node P keeps death cer tificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds
the death certificate for I tem X

 Node P will recirculate the death cer tificate across the
network for I tem X

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.24

DEATH CERTIFICATE EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.13

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.25

CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities

in the distributed system

 Encapsulates synchronization

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.26

CHAPTER 6 - COORDINATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.14

 Synchronization challenges begin with time:

 How can we synchronize computers, so they all agree on
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it
is often sufficient to only agree on a relative ordering of
events

 E.g. not actual time

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.27

COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordinate problems:
 Aggregation
 Peer sampling
 Overlay construction

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.28

COORDINATION - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.15

CH. 6.1: CLOCK
SYNCHRONIZATION

L14.29

 Example:

 “make” is used to compile source files into binary object and
executable files

 As an optimization, make only compiles fi les when the “last
modified time” of source fi les is more recent that object and
executables

 Consider if files are on a shared disk of a distr ibuted system
where there is no agreement on time

 Consider if the program has 1,000 source files

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.30

CLOCK SYNCHORNIZATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.16

 Updates from different machines, may have clocks set to
different times

 Make becomes confused with which fi les to recompile

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.31

TIME SYNCHRONIZATION PROBLEM
FOR DISTRIBUTED SYSTEMS

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.32

PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60

times a second, or another frequency to track time

1960s ERA radio crystal 

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.17

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at sl ightly different rates

 Time differences accumulate as clocks
drift forward or backward sl ightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.33

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant

transitions of the non-radioactive caesium-133 atom
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to

coordination issues
 Operating systems may translate to show local time

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.34

UNIVERSAL COORDINATED TIME

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.18

How do we synchronize computer clocks with
real-world clocks?

How do we synchronize computer clocks with
each other?

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.35

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time
accuracy to 50ns

 Time servers: Server computers with UTC receivers that
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual t ime clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t: clocks on dif ferent machines gradually become
out of sync due to crystal imperfections, temperature
differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drift rate (): clock specifications include one

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.36

CLOCK SYNCHRONIZATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.19

 If two clocks drift from UTC in opposite directions,
after time t after synchronization, they may be 2 apart.

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of
time for servers

 Leverage distributed network
of time servers

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.37

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.38

NETWORK TIME PROTOCOL

Atomic
clocks

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.20

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.39

NTP - 2

 Cannot set clocks backwards (recall “make” fi le example)
 Instead, temporari ly slow the progress of time to allow fast

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of t ime unti l synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp star t)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.40

NTP - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.21

QUESTIONS

November 16, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L14.41

EXTRA SLIDES

42

