
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.1

Communication &
Coordination

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Assignment #1 Questions
 Assignment #2
 Feedback from 11/14

 Ch. 4 – Communications
 Multicast communication

 Ch. 6 – Coordination
 Physical clocks
 Clock synchronization
 Logical clocks, Lamport clocks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.2

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.3

CHAPTER 4 - COMMUNICATION

 How multicasting is ef fected by overlay networks?

 Application-level multicasting leverages overlay networks

 Create adhoc overlay network

 Support communication between nodes involved in the
application

 Multicasting (e.g. zeromq, UDP) can leverage the network
overlay to propagate application level traffic to the nodes

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.4

FEEDBACK FROM 11/14

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.3

 Intermediate concurrent hash table in assignment #2:

 Chapter 8.5 Distributed Commit

Where should the intermediate concurrent hash table be
deployed?

What is our aim to add this data structure?

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.5

FEEDBACK - 2

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L14.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.4

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.7

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.8

NETWORK STRUCTURE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.5

 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.9

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.10

MULTICAST TREE METRICS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.6

 Stretch (Relative Delay Penalty RDP) for B to C routes:

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total time for
disseminating information

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.11

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 Tree: if only the leaf nodes are to receive the multicast
message, many intermediate nodes are involved

 Solution: construct an overlay network for each multicast
group

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.12

FLOOD-BASED MULTICASTING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.7

 When no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Probability Pedge that two nodes are joined

 Overlay will have: ½ * Pedge * N * (N-1) edges

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.13

RANDOM GRAPHS

 Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability of message spread (pflood)

 Throttles message flooding based on a probability

 Implementation needs to consider # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.14

PROBABILISTIC FLOODING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.8

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Hypercube: nodes forward only to higher dimension nodes

 N(1001) broadcast will only go to N(1011) and N(1000)

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions
of hypercube

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.15

MESSAGE FLOODING

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.16

GOSSIP BASED DATA DISSEMINATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.9

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.17

INFORMATION DISSEMINATION

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges messages updates

 Akin to random walk

 PULL: P only pulls in new updates from Q
 PUSH: P only pushes its own updates to Q
 TWO-WAY: P and Q send updates to each other

(i .e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull : better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better stil l

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.18

ANTI ENTROPY DISSEMINATION MODEL

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.10

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the i th round.

 For pull, push, and push-pull
based approaches:

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.19

ANTI ENTROPY EFFECTIVENESS

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.20

RUMOR SPREADING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.11

 Does not guarantee all nodes wil l be updated

 The fraction of nodes s, that remain susceptible is grows
relative to the probability that node P stops propagating when
finding a node already having the message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.21

RUMOR SPREADING - 2

 Taking network topology into account can help

 When gossiping, nodes connected to only a few other
nodes are more likely to be contacted

 Epidemic protocols assume:

 For gossiping nodes are randomly selected

 One node, can randomly select any other node in the
network

 Complete set of nodes is known to each member

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.22

DIRECTIONAL GOSSIPING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.12

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.23

REMOVING DATA

 For example:

 Node P keeps death cer tificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds
the death certificate for I tem X

 Node P will recirculate the death cer tificate across the
network for I tem X

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.24

DEATH CERTIFICATE EXAMPLE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.13

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.25

CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities

in the distributed system

 Encapsulates synchronization

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.26

CHAPTER 6 - COORDINATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.14

 Synchronization challenges begin with time:

 How can we synchronize computers, so they all agree on
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it
is often sufficient to only agree on a relative ordering of
events

 E.g. not actual time

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.27

COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordinate problems:
 Aggregation
 Peer sampling
 Overlay construction

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.28

COORDINATION - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.15

CH. 6.1: CLOCK
SYNCHRONIZATION

L14.29

 Example:

 “make” is used to compile source files into binary object and
executable files

 As an optimization, make only compiles fi les when the “last
modified time” of source fi les is more recent that object and
executables

 Consider if files are on a shared disk of a distr ibuted system
where there is no agreement on time

 Consider if the program has 1,000 source files

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.30

CLOCK SYNCHORNIZATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.16

 Updates from different machines, may have clocks set to
different times

 Make becomes confused with which fi les to recompile

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.31

TIME SYNCHRONIZATION PROBLEM
FOR DISTRIBUTED SYSTEMS

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.32

PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60

times a second, or another frequency to track time

1960s ERA radio crystal

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.17

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at sl ightly different rates

 Time differences accumulate as clocks
drift forward or backward sl ightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.33

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant

transitions of the non-radioactive caesium-133 atom
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to

coordination issues
 Operating systems may translate to show local time

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.34

UNIVERSAL COORDINATED TIME

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.18

How do we synchronize computer clocks with
real-world clocks?

How do we synchronize computer clocks with
each other?

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.35

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time
accuracy to 50ns

 Time servers: Server computers with UTC receivers that
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual t ime clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t: clocks on dif ferent machines gradually become
out of sync due to crystal imperfections, temperature
differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drift rate (): clock specifications include one

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.36

CLOCK SYNCHRONIZATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.19

 If two clocks drift from UTC in opposite directions,
after time t after synchronization, they may be 2 apart.

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of
time for servers

 Leverage distributed network
of time servers

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.37

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.38

NETWORK TIME PROTOCOL

Atomic
clocks

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.20

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.39

NTP - 2

 Cannot set clocks backwards (recall “make” fi le example)
 Instead, temporari ly slow the progress of time to allow fast

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of t ime unti l synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp star t)

November 16, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L14.40

NTP - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 16, 2017

Slides by Wes J. Lloyd L14.21

QUESTIONS

November 16, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L14.41

EXTRA SLIDES

42

