
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.1

Communication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #1 Questions

Assignment #2

Ch. 4 – Communications
Message-oriented communication:

 Zeromq, MPI,

Message Queueing Systems

Multicast communication

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.2

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.3

CHAPTER 4

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L13.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.3

 RPC assumes that the client and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.5

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.6

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.4

 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l vary (e.g. Java)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.7

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is wil ling to accept

 Accept: blocks unti l connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.8

SERVER SOCKET OPERATIONS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.5

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.9

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.10

SOCKET COMMUNICATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.6

 (0MQ) High per formance intelligent socket l ibrary

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.11

ZEROMQ

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many
connections

Multicast connections (one-to-many – single server socket
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication
patterns

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.12

ZEROMQ – 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.7

 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.13

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull
clients evenly

 Consumers pull results from pipe and
push results downstream

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.14

ZEROMQ – PATTERNS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.8

Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.15

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.16

MESSAGE PASSING INTERFACE (MPI)

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.9

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

 Better buffering and synchronization needed

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.17

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for

parallel programming

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.18

MOTIVATIONS FOR MPI - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.10

 Very large l ibrary, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.19

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.20

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.11

 Message-queueing systems

 Provide extensive support for persistent asynchronous
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other
applications can send messages

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.21

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing
subqueries

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.22

MESSAGE QUEUEING SYSTEMS:
USE CASES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.12

 Scenarios:
(a) Sender/receiver

both running

(b) Sender running,
receiver offl ine

(c) Sender offl ine,
receiver running

(d) Sender/receiver
both offline

 Queue persists msgs,
and attempts to send
them but no one may be available to receive them…

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.23

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile
and senders and receivers can be offl ine

 Messages

 Contain any data, may have size l imit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.24

MESSAGE QUEUEING SYSTEMS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.13

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.25

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.26

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.14

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.27

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing

capabilities
 Help abstract messaging and application interoperabil ity by

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.28

AMQP PROTOCOL

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.15

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two
channels

 Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.29

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.30

AMQP MESSAGING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.16

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.31

MESSAGE-ORIENTED-MIDDLEWARE
EXAMPLES:

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L13.32

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.17

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.33

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.34

NETWORK STRUCTURE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.18

 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.35

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.36

MULTICAST TREE METRICS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.19

 Stretch (Relative Delay Penalty RDP) for B to C routes:

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total time for
disseminating information

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.37

MULTICAST TREE METRICS - 2

QUESTIONS

November 14, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L13.38

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.20

EXTRA SLIDES

39

