
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.1

Communication

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment #1 Questions

Assignment #2

Ch. 4 – Communications
Message-oriented communication:

 Zeromq, MPI,

Message Queueing Systems

Multicast communication

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.2

OBJECTIVES

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.3

CHAPTER 4

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L13.4

 RPC assumes that the cl ient and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.5

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.6

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.2

 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across different libraries will vary (e.g. Java)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.7

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is willing to accept

 Accept: blocks until connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.8

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks
until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.9

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.10

SOCKET COMMUNICATION

 (0MQ) High performance intelligent socket library

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.11

ZEROMQ

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many
connections

Multicast connections (one-to-many – single server socket
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication
patterns

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.12

ZEROMQ – 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.3

 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.13

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull
clients evenly

 Consumers pull results from pipe and
push results downstream

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.14

ZEROMQ – PATTERNS - 2

Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.15

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.16

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

 Better buffering and synchronization needed

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.17

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for

parallel programming

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.18

MOTIVATIONS FOR MPI - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.4

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.19

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.20

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

 Provide extensive support for persistent asynchronous
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other
applications can send messages

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.21

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing
subqueries

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.22

MESSAGE QUEUEING SYSTEMS:
USE CASES

 Scenarios:
(a) Sender/receiver

both running

(b) Sender running,
receiver offline

(c) Sender offline,
receiver running

(d) Sender/receiver
both offline

 Queue persists msgs,
and attempts to send
them but no one may be available to receive them…

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.23

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile
and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.24

MESSAGE QUEUEING SYSTEMS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.5

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.25

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among different users/formats

 Addresses cases when senders and receivers don’t speak the
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.26

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.27

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing

capabilities
 Help abstract messaging and application interoperability by

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.28

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two
channels

 Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.29

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.30

AMQP MESSAGING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.6

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.31

MESSAGE-ORIENTED-MIDDLEWARE
EXAMPLES:

Apache Act i veMQ

CH. 4.4: MULTICAST
COMMUNICATION

L13.32

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.33

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.34

NETWORK STRUCTURE

 Application level multi-casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.35

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.36

MULTICAST TREE METRICS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 14, 2017

Slides by Wes J. Lloyd L13.7

 Stretch (Relative Delay Penalty RDP) for B to C routes:

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for
disseminating information

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L13.37

MULTICAST TREE METRICS - 2 QUESTIONS

November 14, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L13.38

EXTRA SLIDES

39

