
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.1

Communication

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment 1 questions

 The role for UDP

Ch. 4 – Communications
 Protocols

 Remote procedure calls / RMI

Message-oriented communication:

 sockets, zeromq, MPI

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.2

 Connection-oriented communication (TCP)

 Two parties connect, exchange messages, and the
disconnect

 Typically this is a synchronous process, but it can be
asynchronous

 Connectionless communication (UDP)

 Calling program does not enter into a connection with the
target process

 Receiving application simply acts on the request

 This may, or may not, involve sending a response

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

CONNECTIONLESS /
CONNECTION-ORIENTED

 Processes/applications that already provide:
 Internal flow control (packet ordering)

 Error control (management of retransmission requests)

 Broadcasting (sending to subnet)

 Multicasting (addressing to multiple clients)
 Typically in a LAN

 Simple request-response communication
 UDP makes sense for really small transactions because there

is no TCP establishment/tear-down overhead

 Latency is reduced: one-way trip, or out-and-back, but no negotiation

 Bandwidth user: When total communication is less than MTU

 Maximum Transmission Unit: < largest packet size (~1500 avg)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

WHAT ARE USE CASES FOR UDP?

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.3

 When overhead for creating a TCP connection far
outweighs data payload
 DNS servers (quick negotiation of names)

 Network Time servers

 Service discovery (via LAN
broadcast): finding a printer

 When delivering data that CAN be
lost without consequence because
newer data is always flowing in to
replace previous state

 Weather data, video/audio (VoIP)
streaming, video gaming data

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

UDP USE CASES

 UDP can be used for every type of application TCP can

 Requires implementation of proper retransmission
mechanism.

 UDP can be very fast, with low delay, not affected by
congestion on a connection basis, transmits fixed sized
datagrams and can be used for multicasting.

 If implementing an application level protocol . . .

 What would the advantages be for using UDP ?

 What would the advantages be for using TCP ?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

UDP USE CASES - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.4

 A component interacts requests to establish a
subscription to receive notifications regarding particular
data from a shared “tuple” data space

 IS THIS: Connection-less or connection oriented?

 Components publish data to a shared “tuple” data space

 IS THIS: Connection-less or connection oriented?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

CONNECTIONLESS /
CONNECTION-ORIENTED - 2

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

CHAPTER 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.5

CH. 4.1: FOUNDATIONS

L12.9

 Communication frameworks/libraries

 Reused by multiple applications

 Provided needed functions apps build and depend on

 Example:

 Authentication protocols: supports granting users and
processes access to authorized resources

 General, application-independent in nature

 Doesn’t fit as an “application specific” protocol

 Considered as a “Middleware protocol”

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

MIDDLEWARE PROTOCOLS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.6

 Distributed commit protocols

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

 Distributed objects
November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L12.11

MIDDLEWARE PROTOCOLS - 2

 Message queueing services

 Support synchronization of data
streams

 Transfer real-time data

 Distributed and scalable
implementation

 Multicast services

 Scale communication to thousands of
receivers spread across the Internet

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

MIDDLEWARE PROTOCOLS - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.7

 Shows layers actually used

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it
 Example: email system (SMTP)
 Receiver can be offline when message sent
 Temporal decoupling (delayed message delivery)

 Transient communication
 Message stored by middleware only as long as sender/receiver

applications are running
 If recipient is not active, message is dropped
 Transport level protocols typically are transient (no msg storage)

 At what reference model layer is the SMTP Protocol?
 From an implementation point-of-view what major component

is required to implement persistent communication ?
November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L12.14

TYPES OF COMMUNICATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.8

 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of blocking
1. Until middleware notifies it will take over delivering request

2. Sender may synchronize until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization
 Common scheme for message-queueing systems

 Consider each type of blocking (1 , 2, 3). Are these modes
connectionless (UDP)? connection-oriented (TCP)?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

TYPES OF COMMUNICATION - 2

CH. 4.2: RPC

L12.16

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.9

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look
l ike a local one

 newlist = append(data, dbList)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

RPC – REMOTE PROCEDURE CALL

 Transparency enabled with cl ient and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But cl ient DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends to server.
Calls blocking receive routine and waits for reply

 Server stub: transforms incoming
request into local procedure call

 Server blocks waiting for msg

 Server stub unpacks msg, calls
server procedure

 I t ’s as i f the routine were called locally

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.18

RPC - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.10

 Server packs procedure results and sends back to client.

 Clients “receive” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the
network (except when there’s HIGH network latency…)

 Call abstraction allows clients to invoke functions in
alternate languages, on different machines

 Differences are handled by the RPC “framework”

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

RPC STEPS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.11

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.21

RPC STEPS

Consider the overhead of an RPC call
vs. an ordinary local procedure call

where data elements are
pushed/popped, to/from, the call stack

 Stubs: take parameters, pack into message, send across
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must under stand how to unmarshal (unserialize) data

 Processor architecture vary with how bytes are numbered:
Intel (right lef t), older ARM (lef tright)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

PARAMETER
PASSING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.12

 Big-Endian: write bytes left to right (ARM)

 Litt le-endian: write bytes r ight to lef t (Intel)

 Network: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent
format

 Marshaling/unmarshaling:
transform data to neutral
format

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are different

 Solutions to RPC pass-by-reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass-by -value
 Requires transferring entire object/array data over network

 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server

via shared file system

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

RPC: PASS-BY-REFERENCE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.13

 Let developer specify which routines will be called
remotely

 Automate client/server side stub generation for these
routines

 Embed remote procedure calling into the programming
language

 E.g. Java RMI

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])
 Character transmits with 3-padded bytes
 Float as whole word (4-bytes)
 Array as group of words, proceed by word describing

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol
 TCP? UDP?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

STUB GENERATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.14

 Interfaces often specified using an Interface Definition
Language (IDL)

 IDL inter face can be used to generate language specific
threads

 IDL is compiled into cl ient and server-side stubs

 Much of the plumbing for RPC involves maintaining
boilerplate-code

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

 Differences in data representation, and how object is
accessed

 Inter-language parameter passing issues resolved:
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

LANGUAGE BASED SUPPORT

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.15

 RPC: typically client blocks unti l reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs
 When no result, server can immediately send reply

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work

 Client may need to make multiple service calls to multiple
server backends at the same time…

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.30

RPC VARIATIONS – 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.16

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and
waits for call

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.31

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:
Does the client need all results or just one?

 Use cases:

 Fault tolerance: wait for just one

 Replicate execution: verify
results, use first result

 Divide and conquer: multiple
RPC calls work in parallel on
different parts of dataset,
client aggregates results

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

MULTICAST RPC

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.17

 DCE – basis for Microsoft’s distributed computing object
model (DCOM)

 Used in Samba – share windows filesystem via RPC

 Midleware system: provides layer of abstraction between OS
and distr ibuted applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then run and leverage resources

 Uses client/server model

 All communication via RPC

 DCE provides a daemon to track participating machines, por ts

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

RPC EXAMPLE: DISTRIBUTED
COMPUTING ENVIRONMENT (DCE)

1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

DCE – CLIENT/SERVER DEVELOPMENT

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.18

 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

DCE - CLIENT-TO-SERVER BINDING

 For a cl ient to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server
that tracks DCE servers

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.36

DCE - CLIENT TO SERVER BINDING - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.19

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L12.37

 RPC assumes that the client and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 Use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.38

MESSAGE ORIENTED COMMUNICATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.20

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.39

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l vary (e.g. Java)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.40

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.21

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is wil ling to accept

 Accept: blocks unti l connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.41

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.42

CLIENT SOCKET OPERATIONS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.22

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.43

SOCKET COMMUNICATION

QUESTIONS

November 9, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L12.44

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.23

EXTRA SLIDES

45

