
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.1

Communication

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment 1 questions

 The role for UDP

Ch. 4 – Communications
 Protocols

 Remote procedure calls / RMI

Message-oriented communication:

 sockets, zeromq, MPI

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

OBJECTIVES

 Connection-oriented communication (TCP)

 Two parties connect, exchange messages, and the
disconnect

 Typically this is a synchronous process, but it can be
asynchronous

 Connectionless communication (UDP)

 Calling program does not enter into a connection with the
target process

 Receiving application simply acts on the request

 This may, or may not, involve sending a response

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

CONNECTIONLESS /
CONNECTION-ORIENTED

 Processes/applications that already provide:
 Internal flow control (packet ordering)

 Error control (management of retransmission requests)

 Broadcasting (sending to subnet)

 Multicasting (addressing to multiple clients)
 Typically in a LAN

 Simple request-response communication
 UDP makes sense for really small transactions because there

is no TCP establishment/tear-down overhead

 Latency is reduced: one-way trip, or out-and-back, but no negotiation

 Bandwidth user: When total communication is less than MTU

 Maximum Transmission Unit: < largest packet size (~1500 avg)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

WHAT ARE USE CASES FOR UDP?

 When overhead for creating a TCP connection far
outweighs data payload
 DNS servers (quick negotiation of names)

 Network Time servers

 Service discovery (via LAN
broadcast): finding a printer

 When delivering data that CAN be
lost without consequence because
newer data is always flowing in to
replace previous state

 Weather data, video/audio (VoIP)
streaming, video gaming data

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

UDP USE CASES

 UDP can be used for every type of application TCP can

 Requires implementation of proper retransmission
mechanism.

 UDP can be very fast, with low delay, not affected by
congestion on a connection basis, transmits fixed sized
datagrams and can be used for multicasting.

 I f implementing an application level protocol . . .

 What would the advantages be for using UDP ?

 What would the advantages be for using TCP ?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

UDP USE CASES - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.2

 A component interacts requests to establish a
subscription to receive notifications regarding particular
data from a shared “tuple” data space

 IS THIS: Connection-less or connection oriented?

 Components publish data to a shared “tuple” data space

 IS THIS: Connection-less or connection oriented?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

CONNECTIONLESS /
CONNECTION-ORIENTED - 2

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

CHAPTER 4

CH. 4.1: FOUNDATIONS

L12.9

 Communication frameworks/libraries

 Reused by multiple applications

 Provided needed functions apps build and depend on

 Example:

 Authentication protocols: supports granting users and
processes access to authorized resources

 General, application-independent in nature

 Doesn’t fit as an “application specific” protocol

 Considered as a “Middleware protocol”

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

MIDDLEWARE PROTOCOLS

 Distributed commit protocols

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

 Distributed objects
November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L12.11

MIDDLEWARE PROTOCOLS - 2

 Message queueing services

 Support synchronization of data
streams

 Transfer real-time data

 Distributed and scalable
implementation

 Multicast services

 Scale communication to thousands of
receivers spread across the Internet

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

MIDDLEWARE PROTOCOLS - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.3

 Shows layers actually used

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it
 Example: email system (SMTP)
 Receiver can be offline when message sent
 Temporal decoupling (delayed message delivery)

 Transient communication
 Message stored by middleware only as long as sender/receiver

applications are running
 If recipient is not active, message is dropped
 Transport level protocols typically are transient (no msg storage)

 At what reference model layer is the SMTP Protocol?
 From an implementation point-of-view what major component

is required to implement persistent communication ?
November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L12.14

TYPES OF COMMUNICATION

 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of blocking
1. Until middleware notifies it will take over delivering request

2. Sender may synchronize until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization
 Common scheme for message-queueing systems

 Consider each type of blocking (1 , 2 , 3) . Are these modes
connectionless (UDP)? connection-oriented (TCP)?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

TYPES OF COMMUNICATION - 2

CH. 4.2: RPC

L12.16

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look
like a local one

 newlist = append(data, dbList)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

RPC – REMOTE PROCEDURE CALL

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends to server.
Calls blocking receive routine and waits for reply

 Server stub: transforms incoming
request into local procedure call

 Server blocks waiting for msg

 Server stub unpacks msg, calls
server procedure

 I t ’s as i f the routine were called locally

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.18

RPC - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.4

 Server packs procedure results and sends back to client.

 Clients “receive” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the
network (except when there’s HIGH network latency…)

 Call abstraction allows clients to invoke functions in
alternate languages, on different machines

 Differences are handled by the RPC “framework”

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

RPC STEPS

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.21

RPC STEPS

Consider the overhead of an RPC call
vs. an ordinary local procedure call

where data elements are
pushed/popped, to/from, the call stack

 Stubs: take parameters, pack into message, send across
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must under stand how to unmarshal (unserialize) data

 Processor architecture vary with how bytes are numbered:
Intel (right left), older ARM (leftright)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

PARAMETER
PASSING

 Big-Endian: write bytes left to right (ARM)

 Little-endian: write bytes right to left (Intel)

 Network: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent
format

 Marshaling/unmarshaling:
transform data to neutral
format

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are different

 Solutions to RPC pass-by-reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass-by-value
 Requires transferring entire object/array data over network

 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server

via shared file system

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

RPC: PASS-BY-REFERENCE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.5

 Let developer specify which routines will be called
remotely

 Automate client/server side stub generation for these
routines

 Embed remote procedure calling into the programming
language

 E.g. Java RMI

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])
 Character transmits with 3-padded bytes
 Float as whole word (4-bytes)
 Array as group of words, proceed by word describing

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol
 TCP? UDP?

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

STUB GENERATION

 Interfaces often specified using an Interface Definition
Language (IDL)

 IDL interface can be used to generate language specific
threads

 IDL is compiled into client and server-side stubs

 Much of the plumbing for RPC involves maintaining
boilerplate-code

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

 Differences in data representation, and how object is
accessed

 Inter-language parameter passing issues resolved:
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

LANGUAGE BASED SUPPORT

 RPC: typically client blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs
 When no result, server can immediately send reply

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work

 Client may need to make multiple service calls to multiple
server backends at the same time…

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.30

RPC VARIATIONS – 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.6

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and
waits for call

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.31

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:
Does the client need all results or just one?

 Use cases:

 Fault tolerance: wait for just one

 Replicate execution: verify
results, use first result

 Divide and conquer: multiple
RPC calls work in parallel on
different parts of dataset,
client aggregates results

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

MULTICAST RPC

 DCE – basis for Microsoft’s distributed computing object
model (DCOM)

 Used in Samba – share windows filesystem via RPC

 Midleware system: provides layer of abstraction between OS
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then run and leverage resources

 Uses client/server model

 All communication via RPC

 DCE provides a daemon to track participating machines, ports

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

RPC EXAMPLE: DISTRIBUTED
COMPUTING ENVIRONMENT (DCE)

1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

DCE – CLIENT/SERVER DEVELOPMENT

 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

DCE - CLIENT-TO-SERVER BINDING

 For a client to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server
that tracks DCE servers

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.36

DCE - CLIENT TO SERVER BINDING - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.7

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L12.37

 RPC assumes that the cl ient and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 Use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.38

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.39

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across different libraries will vary (e.g. Java)

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.40

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is willing to accept

 Accept: blocks until connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.41

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks
until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.42

CLIENT SOCKET OPERATIONS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

November 9, 2017

Slides by Wes J. Lloyd L12.8

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L12.43

SOCKET COMMUNICATION QUESTIONS

November 9, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L12.44

EXTRA SLIDES

45

