
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.1

Servers, Code Migration

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Assignment 1 questions

 Review Quiz 1

 Feedback from 10/26

 Ch. 3 – Processes and threads
 Servers

 Code migration

 Practice Quiz for midterm

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.2

 Try this website:

 https://www.awseducate.com/Registration?apptype=student&
courseview=true

 Register for University of Washington, TCSS 558

 Please report success obtaining credits this way

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.3

AWS EDUCATE CREDITS

 .docx version of assignment #1 doesn’t work

 Link fixed – thank you!

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.4

FEEDBACK FROM 10/26

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.3

 What’s the difference between cloud systems
and distributed systems?

 GOOD QUESTION

 Distributed systems are built with multiple computers

 D/S on LANs: all nodes connect via private subnet
(subnet mask 255.255.255.0)

 D/S on WANs (internet, cloud): nodes spread across multiple
subnets, traffic is routed

 Cloud systems give us plenty of virtual HW to build any
distributed system (and topology) we desire on-the-fly
 And then delete it and start over again !

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.5

FEEDBACK - 2

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.6

DYNAMIC TOPOLOGIES CIRCA 1997

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.4

 What point(s) remain least clear?

 A few things for implementing threads for to object
servers. . .

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.7

FEEDBACK - 3

 Host objects and enable remote client access

 Do not provide a specific service
 Do nothing if there are no objects to host

 Support adding/removing hosted objects

 Provide a home where objects l ive

 Objects, themselves , provide “services”

 Object parts
 State data

 Code (methods, etc.)

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.8

OBJECT SERVERS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.5

 Consider the implications of object server threading designs:

 How would these designs impact the implementation of
mutual exclusion (synchronized access to shared memory)?

 Single thread of control for object server

 Entire server operates as a sequential thread

 One thread for each object

 Server has multiple threads, one per object

 How many clients share each object instance?

 Objects automatically protected against concurrent access

 Servers use separate thread for client requests

 Must implement concurrency

 Classes should be implemented to be thread-safe

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.9

OBJECT SERVERS - 2

CH. 3.4: SERVERS

L10.10

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.6

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

WAN REQUEST DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 74.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 EC2 instance (VA), ping WA www.google server (74.125.28.147):

 Ping 62.349 ms: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 Local wireless network, ping us-east-1 google (172.217.9.196):

 Ping 74.125.28.147: Average RTT=81.637ms (11 attempts, 15 hops)

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.12

DNS EXAMPLE

Latency to ping VA server in WA: ~64x
Massive slowdown because WA is a wireless network

Latency to ping WA server in VA: ~2.8x
Less of a slowdown because VA is a cloud VM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.7

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and
distributed systems research

 Organizations share
nodes in the cluster

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.13

EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers”
similar to Docker

 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice

 Rcap: resource capability
 Specifies resource capabilities of nodes

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.14

PLANETLAB - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.8

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized
access among Vservers directory trees

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.15

VSERVERS

 Advantages of Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 1)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved

 Linux kernel shares memory among processes

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.16

VSERVERS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.9

CH. 3.5: CODE
MIGRATION

L10.17

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X Windows 10 Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.18

CODE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.10

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.19

PROCESS MIGRATION

 Move processes:
from heavily loaded lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.20

PROCESS MIGRATION - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.11

 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.21

MOTIVATIONS FOR MIGRATION

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.22

LOAD DISTRIBUTION ALGORITHMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.12

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

October 31, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.2
3

 Size of code
 Size of data
 Available network transfer

speed

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.24

APPROACHES TO CODE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.13

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.25

DYNAMIC WEB CLIENTS

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web broswer

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.26

CODE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.14

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.27

CODE MIGRATION - 2

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

* shows what is modified

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.28

CODE MOBILITY TYPES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.15

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.29

MIGRATION OF
HETEROGENEOUS SYSTEMS

 Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.30

VIRTUAL MACHINE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.16

L10.31

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

QUESTIONS

October 31, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.32

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.17

EXTRA SLIDES

33

