
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.1

Servers, Code Migration

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Assignment 1 questions

 Review Quiz 1

 Feedback from 10/26

 Ch. 3 – Processes and threads
 Servers

 Code migration

 Practice Quiz for midterm

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.2

OBJECTIVES

 Try this website:

 https://www.awseducate.com/Registration?apptype=student&
courseview=true

 Register for University of Washington, TCSS 558

 Please report success obtaining credits this way

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.3

AWS EDUCATE CREDITS

 .docx version of assignment #1 doesn’t work

 Link fixed – thank you!

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.4

FEEDBACK FROM 10/26

 What’s the difference between cloud systems
and distributed systems?

 GOOD QUESTION

 Distributed systems are built with multiple computers

 D/S on LANs: all nodes connect via private subnet
(subnet mask 255.255.255.0)

 D/S on WANs (internet, cloud): nodes spread across multiple
subnets, traffic is routed

 Cloud systems give us plenty of virtual HW to build any
distributed system (and topology) we desire on-the-fly
 And then delete it and start over again !

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.5

FEEDBACK - 2

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.6

DYNAMIC TOPOLOGIES CIRCA 1997

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.2

 What point(s) remain least clear?

 A few things for implementing threads for to object
servers. . .

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.7

FEEDBACK - 3

 Host objects and enable remote client access

 Do not provide a specific service
 Do nothing if there are no objects to host

 Support adding/removing hosted objects

 Provide a home where objects live

 Objects, themselves , provide “services”

 Object parts
 State data

 Code (methods, etc.)

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.8

OBJECT SERVERS

 Consider the implications of object server threading designs:

 How would these designs impact the implementation of
mutual exclusion (synchronized access to shared memory)?

 Single thread of control for object server

 Entire server operates as a sequential thread

 One thread for each object

 Server has multiple threads, one per object

 How many clients share each object instance?

 Objects automatically protected against concurrent access

 Servers use separate thread for client requests

 Must implement concurrency

 Classes should be implemented to be thread-safe

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.9

OBJECT SERVERS - 2

CH. 3.4: SERVERS

L10.10

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

WAN REQUEST DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 74.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 EC2 instance (VA), ping WA www.google server (74.125.28.147):

 Ping 62.349 ms: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 Local wireless network, ping us-east-1 google (172.217.9.196):

 Ping 74.125.28.147: Average RTT=81.637ms (11 attempts, 15 hops)

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.12

DNS EXAMPLE

Latency to ping VA server in WA: ~64x
Massive slowdown because WA is a wireless network

Latency to ping WA server in VA: ~2.8x
Less of a slowdown because VA is a cloud VM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.3

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and
distributed systems research

 Organizations share
nodes in the cluster

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.13

EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers”
similar to Docker

 Slices: set of Vservers running across
PlanetLab

 Acts as a virtual server cluster
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be s l ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice

 Rcap: resource capability
 Specifies resource capabilities of nodes

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.14

PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized
access among Vservers directory trees

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.15

VSERVERS

 Advantages of Vservers (containers) vs . VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 1)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved

 Linux kernel shares memory among processes

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.16

VSERVERS - 2

CH. 3.5: CODE
MIGRATION

L10.17

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lex ibili ty of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.18

CODE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.4

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?
October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma
L10.19

PROCESS MIGRATION

 Move processes:
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.20

PROCESS MIGRATION - 2

 Can migrate processes or entire virtual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.21

MOTIVATIONS FOR MIGRATION

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.22

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.2
3

 Size of code
 Size of data
 Available network transfer

speed

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.24

APPROACHES TO CODE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.5

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.25

DYNAMIC WEB CLIENTS

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web broswer

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.26

CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobil ity

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.27

CODE MIGRATION - 2

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

* shows what is modified

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.28

CODE MOBILITY TYPES

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.29

MIGRATION OF
HETEROGENEOUS SYSTEMS

 Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L10.30

VIRTUAL MACHINE MIGRATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 31, 2017

Slides by Wes J. Lloyd L10.6

L10.31

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

QUESTIONS

October 31, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.32

EXTRA SLIDES

33

