
TCSS 558: Applied Distributed Computing Institute of Technology
Fall 2017 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558
Instructor: Wes Lloyd

Assignment 3
Version 0.10

Fault Tolerant Key-Value Store

Due Date: Friday December 15th, 2017 @ 11:59 pm, tentative

Objective
The purpose of assignment 3 is to extend/modify your TCP client/server key-value
store from assignment #1 and assignment #2 to provide fault tolerance via the Raft
consensus protocol as detailed in the Raft paper. Using Raft each node will have its
own “log” for tracking data changing events, in this case, put and del commands.
Raft’s function is to replicate logs across nodes, and when there is a majority
consensus, initiate replication of data. Using consensus it should be possible to
tolerate failures of several nodes as long as a majority remains to sustain
consensus.

A very useful summary of the Raft consensus protocol appears on page 308 of the
paper:

http://faculty.washington.edu/wlloyd/courses/tcss558/papers/InSearchOfAnUndersta
ndableConsensusAlgorithm.pdf

Raft Consensus Protocol
In Raft every node is in either one of three states: follower, candidate, or leader.
The Raft consensus protocol works by always having a “leader” node which
coordinates all interaction among nodes. In Raft there are “rounds”, known as
terms, where there is just one “leader” for a term. The term lasts until the leader
node fails. When the leader node fails, follower nodes detect the failure, and one of
the followers “expires first” from a random sleep delay, and then begins a new
election as the “candidate” node to be leader. The leader must be voted by the
majority of followers of the system to take over as leader. Followers will not vote for
the candidate if the candidates log is not at least as up-to-date as the followers.
This way, elections filter-out candidates which lack information to be leader. The
assumption for the over-all system is that there will always be a majority of nodes
that have not failed such that one will eventually be able to take over leadership in
the event of the failure of the leader node.

Implementing Raft only requires two new methods to be implemented:
AppendEntries and RequestVote. These methods however, require transferring
substantial data from the leader to the follower nodes. If desired you may consider
using an RMI based key-value store, as it may be easier to implement this data
passing, though a TCP-based solution is possible, but the data must be manually
“marshalled” over the socket for these new methods.

Additionally, the “put” and “del” methods from any candidate should always be
forwarded to the leader node. The leader will then add these requested changes to

Page 1 of 11

http://faculty.washington.edu/wlloyd/courses/tcss558/papers/InSearchOfAnUnderstandableConsensusAlgorithm.pdf
http://faculty.washington.edu/wlloyd/courses/tcss558/papers/InSearchOfAnUnderstandableConsensusAlgorithm.pdf
http://faculty.washington.edu/wlloyd/courses/tcss558

its log. At the leader, changes will be committed from the log to the leader’s key-
value store when a majority of nodes report having replicated the log entries. Log
entries are committed to the follower’s key-value stores when during regular
heartbeats from the leader to the followers, the leader reports having committed
entries to its key-value store. In other words, the leader commits first based on
succesfully learning that log entries have been replicated. Once the leader commits
this “opens the door” for follower nodes to then subsequently commit.

For implementing Raft, it is recommended to thoroughly and carefully read sections
1, 2, and 5 of the paper, while making notes to understand how the protocol works.

Using program code developed for assignment 1 & 2, modify “GenericNode” to
support additional “internal” commands for Raft as described in the table to support
fault tolerance. For testing, on a 3-node system it should be possible to periodicaly
stop and start one-node without any loss of data. For a 5-node system, it should be
possible to periodically stop and start two nodes on the system without data loss.
When nodes are resurrected they will begin with NO DATA, and the raft protocol will
bring them up to date.

For Raft, you will need to have a Node membership directory so that you can know
the set of nodes to work with. For Assignment #3 it is ok to assume that the set of
nodes remains fixed. For example, once the system is started with 3, or 5 nodes,
these same nodes (with their IPs and Ports) remain fixed. When nodes fail and
come back up, they will be on the same IPs and ports. To implement this in Docker
it is simply a matter of running a container, stopping, and restarting it. Docker will
always populate container IPs in order:

172.17.0.2 Start your membership server first (KV store)
172.17.0.3 Raft node 1
172.17.0.4 Raft node 2
172.17.0.5 Raft node 3
172.17.0.6 Raft node 4
172.17.0.7 Raft node 5

Raft Protocol Key-Value Store

Operation Description

requestvote requestvote <see raft paper for parameters>

Candidate node will communicate with each node to acquire a vote
to determine leadership status. When the candidate is unable to
acquire a majority number of votes before the randomly selected
electionTimeout elapses, the election expires, the term number
incremented, and a new election is started.

appendentries The leader node periodically sends an “appendentries” command
to every node (except itself) as a heartbeat. This occurs at a
regular interval of approx. ~200ms for example. When there are
log updates, log updates are included in these heartbeat calls. The
leader maintains a list of log indexes for each follower node which
indicates where it believe the followers log is with respect to

Page 2 of 11

updates. The follower can reject an update request with a “FALSE”
response. When “FALSE” is received the leader walks back by one
its index value for the followers log and sends incrementally more
data each time until the follower accepts the request with “TRUE”.
When the follower accepts the request it adds its data to the log.

The leader should use a set of threads, one for each follower node
to continuously enact the heartbeat. You may use a thread pool for
simplicity. (see Java ExecutorService class)

put / del put and del

These commands from the previous assignments will need to be
modified. When a node receives a put or del, if it is not the leader,
then it should forward the request directly to the leader node. The
leader node is the only node which will initially process these
requests. The leader will append put and del commands to its log
and then push out updates the followers.

dput1, dput2, ddel1,
ddel2

All of these commands from two-phase commit should be
commented out, disabled, or deleted for assignment #3.

It is assumed that the get, store, and exit commands work as in Assignment #1.

To support Raft it is necessary to track node membership in the distributed system
to determine the set of nodes across which data will be replicated. To simplify
implementation, you can assume that the configuration of the system will never
change once brought online. So if there is a 5-node system (node1, node2, node3,
node4, node5), even if two nodes fail (e.g. node2, node5), your system will continue
to try to communicate with all 5 nodes forever, with the hope that the nodes will
eventually come back on line.

You may use any of the membership tracking methods described in assignment #2
including: (1) stack configuration file, (2) UDP Discovery, and Centralized
membership key/value store.

The preferred implementation for assignment #3 is in Java 8. Students are free to
implement assignment #2 in C, C++, or Python if preferred. Solutions in
alternate languages must include documentation to describe how to
operate the client and server in the alternate language. All operations
including setup must be explained. Components must be deployed using server
and client docker containers.

Docker for Assignment #3

All solutions must include a (#1) a Server Dockerfile for your membership server
(UDP or TCP key-value store), and (#2) a Server Dockerfile for your raft nodes.
Docker files should be in a separate folder with all supporting files. It should be
possible to quickly perform a “sudo docker build” and “sudo docker run” for each
container. If using a TCP key-value store, then it is expected that the runserver.sh
script will need to be updated with the fixed IP address of the centralized key-value

Page 3 of 11

store before running raft containers. (e.g. the IP is hard coded as a startup
parameter for the GenericNode so it knows where to find the membership server).

Sample dockerfiles can be downloaded here:

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles
.tar.gz

To extract a tar gzip file use the command: (x for extract, z for unzip, f for file)

tar xzf a1_dockerfiles.tar.gz

Then cd into the individual docker_server or docker_client directories to build the
docker images.

The sample dockerfiles includes a placeholder GenericNode.jar Java class archive
file. For assignment #2, you’re to focus on extending the GenericNode.jar TCP
server.

Inside the docker_server directory, a runserver.sh script has been provided.
This script includes a command to start a server of one of the given types.

When building your docker_server container, you should uncomment the TCP server
by removing the “#”:

Dummy jar file
#java -jar GenericNode.jar

#TCP Server – centralized node directory if used
#java -jar GenericNode.jar ts 4410

#TCP Server – KV store
java -jar GenericNode.jar ts 1234 <IP of node directory if used>
Once running, to discover the internal IP address of your server running on a Docker
host, use the following sequence:

First, build the docker_server container:
$ cd docker_server
$ sudo docker build ­t tcss558server .
Sending build context to Docker daemon 5.12kB
Step 1/7 : FROM ubuntu
 ---> ccc7a11d65b1
Step 2/7 : RUN apt-get update
 ---> Using cache
 ---> 1413c1a1f91b
Step 3/7 : RUN apt-get install -y default-jre
 ---> Using cache
 ---> b23e154d7af3
Step 4/7 : RUN apt-get install -y net-tools
 ---> Using cache

Page 4 of 11

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles.tar.gz
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles.tar.gz

 ---> 1d81d5652fc2
Step 5/7 : COPY GenericNode.jar /
 ---> Using cache
 ---> f74d73c86c5c
Step 6/7 : COPY runserver.sh /
 ---> Using cache
 ---> f23167bd7d09
Step 7/7 : ENTRYPOINT /runserver.sh
 ---> Using cache
 ---> e921fbb5db7a
Successfully built e921fbb5db7a
Successfully tagged tcss558server:latest

Then, run the docker container:

$ sudo docker run ­d ­­rm tcss558server
1ad8abcb16cae530322464099487d028154a2452072e5e20f6007ff3e5f1a66d

Now, grab (copy and paste) your unique CONTAINER ID. The Name can also be
used (here distracted hodgkin):

Next, execute bash interactively on this container

$ sudo docker exec ­it 1ad8abcb16ca bash

Then, use the “ifconfig” command inside the container to query the local IP address:

root@1ad8abcb16ca:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:48 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:6527 (6.5 KB) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Testing:

For testing your raft implementation, the focus will be on using a single Docker host
where all raft servers run inside separate containers on a single server. While it
should be simply just “details” to deploy across multiple Docker hosts and scale out

Page 5 of 11

the system at a much larger scale than 5-nodes this will not be tested extensively, if
at all for evaluation of assignment #3.

Assumptions and suggestions to simplify the assignment:

You may make the following assumptions and simplifications of your RAFT
implementation to ease development:

1. When a candidate performs RequestVote() the voting process does not have to
be multi-threaded. It is OK to simply loop through all of the nodes to obtain a vote.
You should, however, retry each node up to a FIXED number of times (e.g. 10)
before moving on.

2. Your TCP client should catch exceptions so that when a node has failed your
server doesn’t crash. Catching exceptions allows you to retry, and eventually if the
node is restored, resume normal operation. Catch IOException for new Socket(),
getOutputStream(), and getInputStream().

3. To implement some of the random timeouts required by Raft, try setting
.setSoTimeout() of your TCP socket.

4. All Node IP/Port pairs are unique. There will be no duplicates.

5. Your NodeDirectory should track a node ID. It is helpful if it has methods to
retrieve a node by ID, or a nodeID by IP/Port.

6. For leader election, it is ok to assume that the node should reply after ~10
retries, and then skip and move on. When skipping, no vote should be recorded.

7. It is ok to push out data during heartbeats, instead of calling AppendEntries when
the Leader node receives a put request. AppendEntries can be called using a fixed
interval such as every ~200ms. For optimal performance, when “put” is called on
the leader, AppendEntries would be called for all nodes, but this is not required.

Your TCP servers should support the same syntax from Assignment #1, except now
multiple servers are run in parallel coordinating using the Raft protocol.

#TCP Server (ts for TCP server – for #3 centralized membership key-value store:
java ­jar GenericNode.jar ts <server port number> <membership­server­IP>
<membership­server­port>

#Example:
java ­jar GenericNode.jar ts 1234 54.12.44.33 1111

For Assignment #1, you may optionally have your servers output debugging
information. But there are no formal output requirements for servers to generate
output either to the console or to logfile(s).

Page 6 of 11

Testing the servers

Operation of the servers will be as in Assignment 1 & 2. Get, put, delete, store, and
exit commands should be supported as in assignment #1:

TCP CLIENT TO SERVER INTERACTION

The first parameter is “tc” for TCP client.
The second parameter is the server IP address.
The third parameter is the server port.

Replace localhost with your server IP address.
“1234” represents the service port. The client and server allow the port number to
be specified. Replace with the port used.

$ java ­jar GenericNode.jar tc localhost 1234 put a 123
server response:put key=a

$ java ­jar GenericNode.jar tc localhost 1234 put b 456
server response:put key=b

$ java ­jar GenericNode.jar tc localhost 1234 get a
server response:get key=a get val=123

$ java ­jar GenericNode.jar tc localhost 1234 del a
server response:delete key=a

$ java ­jar GenericNode.jar tc localhost 1234 store
server response:
key:b:value:456:

$ java ­jar GenericNode.jar tc localhost 1234 exit
<the server then exits>

TCP / UDP References

These may be helpful:
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html

Two Phase Commit Protocol References

The internet will contain helpful references. We will discuss also in class. See book
chapter 8.5 as well.

Suggested Integrated Development Environment (IDE) / Project Build Files

For maximum potential for partial credit, students may submit their project as a
Netbeans project created with the Netbeans IDE, Oracle’s Java IDE. By providing
projects as a Netbeans project, it will be possible for the grader to build your source

Page 7 of 11

https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/

and fix potential issues to support partial credit. For example, a student may nearly
have the code correct, but a small detail prevents operation. If the grader can
rapidly fix the code, a lot of partial credit may be awarded.
Download Netbeans 8.2 here:
https://netbeans.org/downloads/

Alternatively, students not using Netbeans may submit all requisite project build
files, as well as descriptive documentation which clearly states how code can be
rebuilt. If the grader is easily able to rebuild your projects, then there is higher
potential for partial credit.

If no build files are provided, and/or no subsequent documentation describing how
to build your projects, it will not be possible to issue partial credit for
functionality that is nearly complete with minor bugs. In this case, only by reading
the code will the grader attempt to issue partial credit if portions of the program do
not work correctly.

Testing Function and Performance

Your RAFT implementation will be tested by validating that the system
retains the same key-value store log when nodes are terminated and
restored. For a 5-node deployment, at most two nodes may be terminated.
For a 3-node deployment, at most one node will be terminated.

The test script can be used to provide initial data:

TCP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh
To run the scripts, adjust the server and port BASH variables as needed to
test your deployments.

You can check that each server node has replicated the same contents of
the script by counting the number of resulting lines in the key value store at
the conclusion of the test script as follows:

$java ­jar GenericNode.jar tc localhost 1234 store | wc ­l

Assuming no blank lines, the count should be 70. Also textual diffs can be
performed of the outputs.

What to Submit
To submit the assignment, teams should build a single tar gzip archive file that
contains all project source code in a main project directory. This could be the
Netbeans project folder. In the project directory there should be two directories for
the Docker containers: membership_server and raft_server. The folders must be
updated to include your GenericNode.jar file and they must support building a
functioning server container. If you don’t use a membership server, but instead
require a fixed file to specify raft nodes, only the raft_server container is required.

Page 8 of 11

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh
https://netbeans.org/downloads/

Grading Rubric

This assignment will be scored out of 100 points, while as many as 110 points are
possible.

Functionality 90 points
20 points 3-node system supports loss and restoration of one node
10 points 5-node system supports loss and restoration of two nodes
15 points Logs update kv stores correctly

(e.g. replication & synchronization)
10 points Raft follower node role: votes and updates logs
10 points Raft candidate election mode: RequestVote requests
10 points Raft leader node role: sends heartbeats
10 points Raft leader node role: sends AppendEntries Updates
5 points Node membership server working

Miscellaneous 20 points
5 points Use of multiple server threads
5 points Healthy synchronization, concurrency, locking, etc.
5 points Docker container scripts
5 points Program compiles, instructions provided or Netbeans used

Teams (optional)
Optionally, this programming assignment can be completed with two or three
person teams.

If choosing to work in a team, only one person should submit the team’s tar gzip
project source archive file and the performance report PDF file to Canvas.

Additionally, EACH member of a team should submit an effort report on team
participation. Effort reports are submitted INDEPENDENTLY and in confidence (i.e.
not shared) by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a
document in PDF format.
For assignment 0, the effort report should consist of a one-third to one-half page
narrative description describing how the team members worked together to
complete the assignment. The description should include the following:

1. Describe the key contributions made by each team member.
2. Describe how working together was beneficial for completing the assignment.

This may include how the learning objectives of using EC2, Docker, Docker-
machine, and haproxy were supported by the team effort.

3. Comment on disadvantages and/or challenges for working together on the
assignment. This could be anything from group dynamics, to commute
challenges, to faulty technology.

Page 9 of 11

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each
team member. Distribute a total of 100 points among both team members.
Identify team members using first and last name. For example:

John Doe
Research 65
Design 42
Coding 30
Testing 80

Jane Smith
Research 35
Design 58
Coding 70
Testing 20

Team members may not share their effort reports, but should submit them
independently in Canvas as a PDF file. Failure of one or both members to submit
the effort report will result in both members receiving NO GRADE on the
assignment…

Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working
with distributed systems and requisite compute infrastructure. Pair programming is
provided as an opportunity to harness teamwork to tackle programming challenges.
But this does not mean that teams consist of one champion programmer, and a second
observer simply watching the champion! The tasks and challenges should be shared as
equally as possible.

Helpful Hints

Docker build
sudo docker build -t tcss558server .
sudo docker build -t tcss558client .

Run docker container in the background
sudo docker run -d --rm tcss558server
sudo docker run -d --rm tcss558client

Docker shell to a container
sudo docker exec -it <container-id> bash

To display all containers running on a given docker node:
docker ps ­a

To stop a container:
docker stop <container­id>
For example:
docker stop cd5a89bb7a98

Page 10 of 11

Also docker kill will kill a running container and docker rm will remove a container
which has exited but is no longer running.

Document History:
v.10 Initial version

Page 11 of 11

