
TCSS 558: Applied Distributed Computing Institute of Technology
Fall 2017 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558
Instructor: Wes Lloyd

Assignment 2
Version 0.14

Replicated Key Value Store

Due Date: Friday December 1st, 2017 @ 11:59 pm, tentative

Objective
The purpose of assignment 2 is to extend your TCP client/server key-value store to
support replication and node discovery. Replication can be implemented using a
two-phase-commit algorithm.

Two-Phase Commit Algorithm
Any TCP server receiving a client request to put or delete a node becomes the
leader of the transaction. Every TCP server maintains an active copy of the node
membership directory. Upon receiving a put or delete request the TCP server node
sends becomes the leader and sends a round of dput1/ddel1 requests to every TCP
server to request the put or delete of the key/value pair. Each node checks if the
key in question is presently locked. If the key is available, the TCP server responds
with an acknowledgement to the leader indicating that it is able to proceed with the
transaction. At this this the node will “lock” the key from other updates. If the
leader receives acknowledgements from ALL known servers, then a second
dput2/ddel2 command is sent to all nodes to commit the data. If nodes receive the
dput2/ddel2, they proceed with the operation locally and unlock the key. If any one
node responds to the leader with an abort message (because the key is locked) the
entire transaction is aborted. At this point the leader will retry the transaction
up to a fixed number of times, let’s say 10. If the transaction can not be committed
after 10 attempts, it is aborted, and an error message is produced.

Using program code developed for assignment 1, extend “GenericNode” to support
additional “internal” commands described in the table to support two-phase
commit. Your TCP Server will now leverage your TCP client code for the purpose of
sending internal commands to the server nodes. The operations below represent an
application-level protocol for a replicated key-value store. You are welcome to
implement a custom protocol (and replication algorithm) if desired, but
you will be required to submit summary documentation (as a PDF file)
describing your protocol in a similar format as in the table.

You may assume:
 Nodes will NOT fail during transactions.
 Only write transactions (put / delete) need to be synchronized.
 Each node should maintain data for in-progress transactions to a concurrent

data structure. You do not have to implement your own from scratch.
 Only one operation on a given key can be performed across the nodes

concurrently. Attempts to perform multiple parallel operations on the same
key will be aborted by any node detecting conflicts.

Page 1 of 12

http://faculty.washington.edu/wlloyd/courses/tcss558

Replicated Key-Value Store Application Protocol

Operation Description

dput1 dput1 <key> <value>

Called by the transaction leader, dput1 starts an internal node-to-
node transaction to replicate the key/value pair at a remote node.
Upon receiving this command the local node locks the key/value
pair and sends an acknowledgement message to the leader
indicating it is ready to proceed to commit the PUT operation. If
the key/value pair is already locked locally, then an abort message
is sent to the leader and the transaction will be aborted.

dput2 dput2 <key> <value>

Called by the transaction leader, dput2 finishes an internal node-to-
node transaction to put the key/value pair at a remote node. Upon
receiving this command the local node performs the “put”
operation on its local datastore. After the key is put, the key/value
pair is unlocked enabling other updates to be performed by other
nodes in the replicated key/value store.

The node responding to dput2 will respond with a message
equivalent to the put message from assignment 1.

dputabort dputabort <key> <value>

Called by the transaction leader, dputabort aborts an internal node-
to-node transaction across the replicated key-value store.
Transactions are aborted by the leader if at least one node sent an
abort message as a result of dput1. Upon receiving the dputabort,
the local node removes the lock from the local key/value store.

ddel1 ddel1 <key>

Called by the transaction leader, ddel1 begins a replicated delete
operation across the nodes of the replicated key/value store.
Locking and messaging follow the same scheme as for dput1.

ddel2 ddel2 <key>

Called by the transaction leader, ddel2 finishes a replicated delete
operation across the nodes of the replicated key/value store.
Locking and messaging follow the same scheme as for dput2.

The node responding to ddel2 will respond with a message
equivalent to the del message from assignment 1.

ddelabort ddelabort <key> <value>

Called by the transaction leader, ddelabort aborts an internal node-
to-node transaction across the replicated key-value store.
Transactions are aborted by the leader if at least one node sent an
abort message as a result of ddel1. Upon receiving ddelabort the
local node removes the lock from the local key/value store.

Page 2 of 12

To support a replicated key-value store it is necessary to track node membership in
the distributed system to determine the set of nodes across which data will be
replicated.

Three membership tracking methods are available. Students must implement at
least one membership tracking method. Extra credit is available for implementing
method #2 and/or method #3.

Node Membership Tracking Methods

Method Description

1. Static configuration file The simplest approach to manage membership is to
provide a text file with IP:PORT pairs for all nodes
participating in the replicated key-value store. When the
GenericNode is deployed using separate docker
containers, a static configuration file must be updated
and pushed out to each of the containers. The file
should be called “/tmp/nodes.cfg”. GenericNode should
periodically reload this file every few seconds to
constantly refresh the view of the system. The format of
the file should be a simple list with each node (IP/PORT)
represented on a separate line as follows:

10.0.0.5:1234
10.0.0.4:1234
10.0.0.3:1234

As a proof of successful distributed deployment, capture
and provide execution times for the bigtest_tc.sh script
on a 3-container deployment.

2. UDP Discovery An alternate approach is to manage membership
dynamically by having the server discover nodes via a
UDP broadcast protocol. For this approach, devise a
simple protocol where nodes periodically send
broadcast messages to each other via UDP, and each
node accumulates a complete membership list based on
received broadcast messages. If a node is not heard
from after 10 seconds, it can be removed from the
system. Broadcast should occur using a fixed port, such
as #4410.

Using UDP discovery, it should be possible to launch
multiple docker containers on a single docker host and
they will self-discover their existence and begin to
collectively replicate all transactional data.

Note, due to limitations with Docker overlay networks, it
is not presently possible to use UDP discovery to
discover nodes on separate Docker host machines.

As a proof of successful deployment, capture and
provide execution times for the bigtest_tc.sh script on
single docker host deployments of 1, 3, and 5
containers.

Page 3 of 12

See Docker UDP Broadcast Overlay Bug:
https://github.com/docker/libnetwork/issues/552

3. Centralized membership
key/value store

For approach 3, deploy a centralized, non-replicated
instance of your own TCP key value server from
assignment #1, to track node membership. Keys will be
IP addresses. Values will be ports. The full store list will
represent all participating nodes.

Add command line arguments to your TCP server startup
to specify a centralized key/value store for tracking node
membership:

New TCP server startup CLI:
java -jar GenericNode.jar ts <listen-port> <membership-
server-IP>

You may use a HARD CODED port for the membership
server, for example port 4410. You will need to first
launch an instance of your TCP key-value store to listen
on this port. You should create a separate docker
container for this called “nodedirectory”. Once
launching the node directory kvstore, check what it’s IP
address is, and then launch all subsequent keyvalue
stores by refering to the membership-server IP address.

Detailed instructions are here:
http://faculty.washington.edu/wlloyd/courses/tcss558/ass
ignments/a2/DockerSwarmOverlay-howto.txt

When your TCP server starts, it will send a TCP client
command to publish its own IP/PORT to the centralized
server, and then periodically request the complete list of
servers every few seconds.

As a docker exercise, scripts will be provided to deploy
your replicated key-value store as a service across
multiple docker hosts. Your centralized membership
server will be deployed as a secondary service to a
single docker host. The membership server will be
deployed first and its IP/PORT can then be statically
defined in the runserver.sh script of the docker container
for your replicated key-value store.

This implementation will enable your key-value store to
scale across multiple virtual machines and containers on
AWS.

As a proof of successful deployment, capture and
provide execution times for the bigtest_tc.sh script
docker service deployments using 5, and 10 containers
deployed across a Docker swarm consisting of 3 and 5
docker host machines.

Students who submit a working, replicated TCP GenericNode server, and
performance comparison supporting both UDP (#2), and the Centralized TCP

Page 4 of 12

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarmOverlay-howto.txt
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarmOverlay-howto.txt

Membership tracking server (#3) without significant errors will be eligible for up to
20% extra credit.

The preferred implementation for assignment #2 is in Java 8. Students are free to
implement assignment #2 in C, C++, or Python if preferred. Solutions in
alternate languages must include documentation to describe how to
operate the client and server in the alternate language. All operations
including setup must be explained. Components must be deployed using server
and client docker containers.

Docker for Assignment #2

All solutions must include a Server Dockerfile to support creating server containers.
Servers must be able to communicate on the local subnetwork shared among
containers of a single Docker host, or shared among multiple containers across a
Docker overlay network. The client container will use the docker container private
network IP address to facilitate communication with the server.

To support working with Docker containers, Dockerfiles for the client and server
have been provided and can be downloaded here: (feel free to use these, or
develop new Dockerfiles...)

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles
.tar.gz

To extract a tar gzip file use the command: (x for extract, z for unzip, f for file)

tar xzf a1_dockerfiles.tar.gz

Then cd into the individual docker_server or docker_client directories to build the
docker images.

The sample dockerfiles includes a placeholder GenericNode.jar Java class archive
file. For assignment #2, you’re to focus on extending the GenericNode.jar TCP
server.

Inside the docker_server directory, a runserver.sh script has been provided.
This script includes a command to start a server of one of the given types.

When building your docker_server container, you should uncomment the TCP server
by removing the “#”:

Dummy jar file
#java -jar GenericNode.jar

#TCP Server – centralized node directory if used
#java -jar GenericNode.jar ts 4410

#TCP Server – KV store
java -jar GenericNode.jar ts 1234 <IP of node directory if used>

Page 5 of 12

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles.tar.gz
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles.tar.gz

Once running, to discover the internal IP address of your server running on a Docker
host, use the following sequence:

First, build the docker_server container:
$ cd docker_server
$ sudo docker build ­t tcss558server .
Sending build context to Docker daemon 5.12kB
Step 1/7 : FROM ubuntu
 ---> ccc7a11d65b1
Step 2/7 : RUN apt-get update
 ---> Using cache
 ---> 1413c1a1f91b
Step 3/7 : RUN apt-get install -y default-jre
 ---> Using cache
 ---> b23e154d7af3
Step 4/7 : RUN apt-get install -y net-tools
 ---> Using cache
 ---> 1d81d5652fc2
Step 5/7 : COPY GenericNode.jar /
 ---> Using cache
 ---> f74d73c86c5c
Step 6/7 : COPY runserver.sh /
 ---> Using cache
 ---> f23167bd7d09
Step 7/7 : ENTRYPOINT /runserver.sh
 ---> Using cache
 ---> e921fbb5db7a
Successfully built e921fbb5db7a
Successfully tagged tcss558server:latest

Then, run the docker container:

$ sudo docker run ­d ­­rm tcss558server
1ad8abcb16cae530322464099487d028154a2452072e5e20f6007ff3e5f1a66d

Now, grab (copy and paste) your unique CONTAINER ID. The Name can also be
used (here distracted hodgkin):

Next, execute bash interactively on this container

$ sudo docker exec ­it 1ad8abcb16ca bash

Then, use the “ifconfig” command inside the container to query the local IP address:

root@1ad8abcb16ca:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Page 6 of 12

 RX packets:48 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:6527 (6.5 KB) TX bytes:0 (0.0 B)

It is recommended to develop your code on a local machine, and test the
deployments to Docker containers before submitting.

Docker Swarm:

A how-to document is posted here:

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarm
Overlay-howto.txt

The document includes instructions for configuring Docker Swarm using multiple
docker-machine hosts and deploying your TCP server as a docker service. Once
setting up Docker Swarm an overlay network can be configured to support TCP
communication on a private network, or, servers can communicate using AWS
public IP addresses.

Running multiple TCP node servers:

Your TCP servers should support the same syntax from Assignment #1, except now
multiple can be run in parallel.

#TCP Server (ts for TCP server – for #3 centralized membership key-value store:
java ­jar GenericNode.jar ts <server port number> <membership­server­IP>
<membership­server­port>

#Example:
java ­jar GenericNode.jar ts 1234 54.12.44.33 1111

For Assignment #1, you may optionally have your servers output debugging
information. But there are no formal output requirements for servers to generate
output either to the console or to logfile(s).

Testing the servers

Once the IP address of the server is discovered, point your client to this IP address
and include the port number for TCP to support client/server interaction.

Get, put, delete, store, and exit commands should be supported as in assignment
#1:

TCP CLIENT TO SERVER INTERACTION

The first parameter is “tc” for TCP client.
The second parameter is the server IP address.
The third parameter is the server port.

Page 7 of 12

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarmOverlay-howto.txt
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarmOverlay-howto.txt

Replace localhost with your server IP address.
“1234” represents the service port. The client and server allow the port number to
be specified. Replace with the port used.

$ java ­jar GenericNode.jar tc localhost 1234 put a 123
server response:put key=a

$ java ­jar GenericNode.jar tc localhost 1234 put b 456
server response:put key=b

$ java ­jar GenericNode.jar tc localhost 1234 get a
server response:get key=a get val=123

$ java ­jar GenericNode.jar tc localhost 1234 del a
server response:delete key=a

$ java ­jar GenericNode.jar tc localhost 1234 store
server response:
key:b:value:456:

$ java ­jar GenericNode.jar tc localhost 1234 exit
<the server then exits>

TCP / UDP References

These may be helpful:
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html

Two Phase Commit Protocol References

The internet will contain helpful references. We will discuss also in class. See book
chapter 8.5 as well.

Suggested Integrated Development Environment (IDE) / Project Build Files

For maximum potential for partial credit, students may submit their project as a
Netbeans project created with the Netbeans IDE, Oracle’s Java IDE. By providing
projects as a Netbeans project, it will be possible for the grader to build your source
and fix potential issues to support partial credit. For example, a student may nearly
have the code correct, but a small detail prevents operation. If the grader can
rapidly fix the code, a lot of partial credit may be awarded.
Download Netbeans 8.2 here:
https://netbeans.org/downloads/

Alternatively, students not using Netbeans may submit all requisite project build
files, as well as descriptive documentation which clearly states how code can be
rebuilt. If the grader is easily able to rebuild your projects, then there is higher
potential for partial credit.

Page 8 of 12

https://netbeans.org/downloads/
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/

If no build files are provided, and/or no subsequent documentation describing how
to build your projects, it will not be possible to issue partial credit for
functionality that is nearly complete with minor bugs. In this case, only by reading
the code will the grader attempt to issue partial credit if portions of the program do
not work correctly.

Testing Function and Performance

A TCP test script is online at:

TCP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh
To run the scripts, adjust the server and port BASH variables as needed to
test your deployments.

You can check that each server node has replicated the same contents of
the script by counting the number of resulting lines in the key value store at
the conclusion of the test script as follows:

$java ­jar GenericNode.jar tc localhost 1234 store | wc ­l

Assuming no blank lines, the count should be 70. Also textual diffs can be
performed of the outputs.

To measure performance of TCP, run the script as follows:

#TCP
time ../bigtest_tc.sh > /dev/null

With your submission, please create a PDF file created with Google Docs.
Include in the file performance numbers obtained for your multi-container /
multi-host deployments coinciding with your membership tracking approach
(static file, UDP discovery, centralized TCP key/value store) as described in
the table.

Please test a 1-node, 3-node, and 5-node deployment. Please include
performance numbers in a PDF file. Please label each configuration with the
node directory type (Static File, UDP Discovery, or TCP Discover), and the
number of server nodes tested so the performance of each is quick to
identify and the configure you used is easy to see as follows:

Assignment 2, Static File, 1 Container TCP
TCP 17.513s

Assignment 2, Static File, 3 Container TCP
TCP 22.143s

Page 9 of 12

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh

Assignment 2, Static File, 5 Container TCP
TCP 94.233s

Note the example times here are bogus.

What to Submit
To submit the assignment, teams should build a single tar gzip archive file that
contains all project source code in a main project directory. This could be the
Netbeans project folder. In the project directory there should be two directories for
the Docker containers: docker_server and docker_client. The folders must be
updated to include your GenericNode.jar file and they must support building a
functioning TCP server container.

PDF files with performance results should be submitted as a separate file in Canvas.

Grading Rubric

This assignment will be scored out of 100 points, while as many as 120 points are
possible.

Functionality 70 points
10 points TCP client/server 2-node put replication
3 points TCP client/server 3-node put replication
2 points TCP client/server 5-node put replication
10 points TCP client/server 2-node del replication
3 point TCP client/server 3-node del replication
2 points TCP client/server 5-node del replication
20 points Implementation of one membership tracking system:

Can be:
(1) static node membership file (e.g. nodelist)
(2) TCP centralized membership server
(3) UDP centralized membership server
Instructions should be provided on how to make node
discovery work if not obvious.

5 points Membership tracking system is dynamic – nodes can join
and leave the system, and configuration is updated. But
there is not requirement to bring KV store up to date as in
the RAFT protocol.
Must indicate in documentation that this feature has been
implemented.

10 points Implementation of a second membership tracking system
Can be:
(1) static node membership file (e.g. nodelist)
(2) TCP centralized membership server
(3) UDP centralized membership server
Instructions must be provided on how to make the second
method of node discovery work if not obvious.

5 points Implementation of UDP broadcast membership server
For UDP broadcast, there should be no configuration (e.g.

Page 10 of 12

IP) Node discovery is accomplished entirely with UDP
broadcast messages. No IPs are provided, and
configuration is automatic on a single docker host.
Must indicate in documentation that this feature has been
implemented.

Miscellaneous 50 points
10 points Use of multiple server threads
10 points Healthy synchronization, concurrency, locking, etc.
10 points Performance measurement of multi-node deployments
5 points Docker container scripts
5 points Replication protocol style
5 points Membership protocol style
5 points Program compiles, instructions provided or Netbeans used

Teams (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip
project source archive file and the performance report PDF file to Canvas.

Additionally, EACH member of a team should submit an effort report on team
participation. Effort reports are submitted INDEPENDENTLY and in confidence (i.e.
not shared) by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a
document in PDF format.
For assignment 0, the effort report should consist of a one-third to one-half page
narrative description describing how the team members worked together to
complete the assignment. The description should include the following:

1. Describe the key contributions made by each team member.
2. Describe how working together was beneficial for completing the assignment.

This may include how the learning objectives of using EC2, Docker, Docker-
machine, and haproxy were supported by the team effort.

3. Comment on disadvantages and/or challenges for working together on the
assignment. This could be anything from group dynamics, to commute
challenges, to faulty technology.

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each
team member. Distribute a total of 100 points among both team members.
Identify team members using first and last name. For example:

John Doe
Research 65
Design 42
Coding 30
Testing 80

Page 11 of 12

Jane Smith
Research 35
Design 58
Coding 70
Testing 20

Team members may not share their effort reports, but should submit them
independently in Canvas as a PDF file. Failure of one or both members to submit
the effort report will result in both members receiving NO GRADE on the
assignment…
Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working
with distributed systems and requisite compute infrastructure. Pair programming is
provided as an opportunity to harness teamwork to tackle programming challenges.
But this does not mean that teams consist of one champion programmer, and a second
observer simply watching the champion! The tasks and challenges should be shared as
equally as possible.

Helpful Hints

Docker build
sudo docker build -t tcss558server .
sudo docker build -t tcss558client .

Run docker container in the background
sudo docker run -d --rm tcss558server
sudo docker run -d --rm tcss558client

Docker shell to a container
sudo docker exec -it <container-id> bash

To display all containers running on a given docker node:
docker ps ­a

To stop a container:
docker stop <container­id>
For example:
docker stop cd5a89bb7a98

Also docker kill will kill a running container and docker rm will remove a container
which has exited but is no longer running.

Document History:
v.10 Initial version
v.11 Revised to add link to docker swarm notes for configuring network overlay
v.12 Corrected and revised rubric
v.14 Removed legacy comment under rubric related to implemented static
member file approach. One approach is required worth 20 pts, a second is 10 pts
extra credit. A third approach is 0 pts extra credit.

Page 12 of 12

