TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

TCSS 422: OPERATING SYSTEMS

A1 b Crp
Zhd’zr“mmﬁrfrr

Semaphores

Wes J. Lloyd

School of Engineering and Technology
University of Washington - Tacoma

OBJECTIVES

® Semaphores - API
® Uses
= Reader/Writer Locks

® Dining Philosophers

TCSS422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.2

Slides by Wes J. Lloyd

5/11/2021

B.1

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

ANOTHER APPROACH TO CONCURRENCY

= We’'ve looked at Locks (ch. 28) and Conditions (ch. 30) to
provide atomicity in critical sections for concurrency

= Now we’ll look at “semaphores”

® Provide same functionality

= With different “packaging”

TCSS422: Operating Systems [Spring 2021]

B.3
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

THE SEMAPHORE

®mSemaphores (struct in Linux):

® Contains:

= Lock
® |Integer: (essentially a counter)
m List: (thread wait list)

TCSS422: Operating Systems [Spring 2021]

B.4
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

Slides by Wes J. Lloyd

5/11/2021

B.2

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

® sem_init():

SEMAPHORE API

1 #include <semaphore.h>
2 sem_t s;
3 sem_init (&s, 0,

1): // initialize 3 to the value 1

® |nitializes new semaphore:

® First param- address of a semaphore
Second param: O- single process, 1- multiprocess

“1” can be used with fork() to synchronize processes

Third param: initial value of counter

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.5

SEMAPHORE API - 2

®Esem_wait():
= Decrements the value of the semaphore counter,
and returns
= Adds thread to wait queue if counter <=0
and blocks it

1
2
3
4

int sem wait (sem T *s) {

decrement the value of semaphore s by one
wait if wvalue of semaphore s is negative

= The negative value corresponds to the nhumber of queued,
waiting threads

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.6

Slides by Wes J. Lloyd

5/11/2021

B.3

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

SEMAPHORE API - 3

B sem_post():
=" Increments the semaphore counter by 1.

= Awakens a thread on the wait queue (if any)
(when counter < 0)

1 int sem post(sem t *s) {
2 increment the value of semaphore s by one
3 if there are one or more threads waiting, wake one
4}
" TCSS422: Operating Systems [Spring 2021]
SRIDER02L School of Engineering and Technology, University of Washington - Tacoma B7

SEMAPHORE AS A LOCK

® What should the value of X be below?

= Consider two threads entering this code,
one immediately after the other

= What should the first thread do?
= The second thread do?

sem_t m;
sem_init(&m, 0, X); // initialize semaphore to X

sem_wait(&m); // similar to lock
// critical section goes here
sem_post(&m) ; // similar to unlock

TCSS422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.8

Slides by Wes J. Lloyd

5/11/2021

B.4

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

TWO THREADS AND A SEMAPHORE

Value | Thread 0 State Thread 1 State
- Se ma p h ore A . Running Ready
21 call sem wait() Running Ready
as a lock: » 0 sem wait () retruns Running Ready
0 (crit set: begin) Running Ready
o Interrupt; Switch — T1 Ready Running
] Ready call sem wait() Running
-1 Ready decrement sem Running
=1 » Ready (sem < 0)—sleep sleeping
=1t Running Switch - T0 sleeping
-1 (crit sect: end) Running sleeping
=dl call sem post() Running sleeping
» 0 increment sem Running sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
0 Interrupt; Switch — T1 Ready Running
0 Ready sem wait () retruns Running
0 » Ready (crit sect) Running
0 Ready call sem _post() Running
i Ready sem_post () returns Running
Spring 2021 TCSS422: Operating Systems [Spring 2021] B9

School of Engineering and Technology, University of Washington - Tacoma

SEMAPHORE AS A CONDITION VARIABLE

mSemaphores can be thought of as “mutants”

*They can be used as locks, or condition variables

®m Consider an example

Spring 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

B.10

Slides by Wes J. Lloyd

5/11/2021

B.5

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

SEMAPHORE AS A CONDITION VARIABLE -2

® What should be the value of X ?

17

19}

printf ("parent:
18 return 0;

printf("child\n");
» sem post (&s); // signal here: child is don

sem _init(&s, 0, X):
printf ("parent: begin\n"):
14 pthread t c:
15 pthread create(c, NULL, child, NULL):
» sem wait (&s); // wai

end\n") ;

1 sem t s;

2

3 void *

4 child (void *arg) {
5

[

7 return NULL:
8 }

9

10 int

12

13

11 iain(int argc, char *argvI[]) {

m

// what shoulc

t here for child

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

ORDERING OF EXECUTION - 1 OF 2

® Parent calls sem_wait() before child calls sem_post()

Value | Parent State Child State
0 Create (Child) Running (Child exists; is runnable) Ready
0 call sem wait() Running Ready
-1 decrement sem Running Ready
-1 (sem < 0)—sleep sleeping Ready
-1 sSwitch-.Child sleeping child runs Running
-1 sleeping | call sem post() Running
0 sleeping increment sem Running
0 Ready wake (Parent) Running
0 Ready sem post() returns Running
0 Ready Interrupt; Switch-.Parent Ready
0 sem wait() retruns Running Ready

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.12

Slides by Wes J. Lloyd

5/11/2021

B.6

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

ORDERING OF EXECUTION - 2 OF 2

® Child runs, calls sem_post() before parent calls sem_wait()

Value | Parent State Child State
0 Create (Child) Running (Child exists, is runnable) Ready
0 Interrupt; switch-Child Ready child runs Running
0 Ready call sem_post() Running
! Ready increment sem Running
1 Ready wake (nobody) Running
1 Ready sem_post () returns Running
i parent runs Running Interrupt; Switch-Parent Ready
1 call sem wait() Running Ready
0 decrement sem Running Ready
0 (sem<0) —awake Running Ready
0 sem_wait () retruns Running Ready
SRIDER02L ggﬁiﬁfﬁf g’\)geiLa:er:’ignzy:;edm‘lf‘eg?wg?oggi,oﬁﬂiversity of Washington - Tacoma B13

PRODUCER/CONSUMER W/ SEMAPHORES

® Producer: put()
® Consumer: get()
® With MAX=1, 1 consumer thread, 1 producer thread:

1 int buffer[MAX];
2 ipt £ill = 0y
3 int use = 0;
4
5 void put(int value) {
[buffer[fill] = value; L il
7 fill = (fill + 1) % MaX; // line
g
9
10 ink .get() |
11 int tmp = buffer[use]; /4 1ir
12 use = (use + 1) % MAX; /11
13 return tmp:
14 }
Spring 2021 ;Er?iilzif gr?;i;ac::e':'ignzy:;edm‘lig‘:\!ggi? fJ:rll]iversity of Washington - Tacoma B4

Slides by Wes J. Lloyd

5/11/2021

B.7

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

PRODUCER/CONSUMER W/ SEMAPHORES - 2

il sem T empty;
2 sem_t full:
3
4 void *producer(void *arg) {
5 int is
3 for (i = 0; i < loops; i++) {
7 sem _wait (&empty) ; // line
8 put(i): "
9 sem_post (&full) ; it 1
10 }
il }
12
i3 void *consumer(void *arg) {
14 int i, tmp = 0;
15 while (tmp != -1) {
16 sem wait (&full); /7 1
17 tmp = get () : A
18 sem_post (&empty) ; £ A
19 printf ("%d\n", tmp):;
20 }
21}
22
q TCSS422: Operating Systems [Spring 2021
Spring 2021 School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma 813

PRODUCER/CONSUMER W/ SEMAPHORES - 3

2 int main{int argec, char *argv[]) {

22 7

23 sem_init {(sempty, 0, MAX): to begin
24 sem_init (&full, 0, 0);

25 e

26 }

® This code is sufficient for any size buffer with
1 producer, 1 consumer

= Try it out

® But what happens if we add multiple producers and
consumers?

= Try it out

® Must consider critical sections

TCSS422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.16

Slides by Wes J. Lloyd

5/11/2021

B.8

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION

® Which part of the code is the critical section?

1 sem t empty;
2 sem t full;
3 sem t mutex;
4
5 void *producer (void *arg) {
[int i;
7 for (i = 0; 1 < loops; i++) |
8 sem_wait (amutex); // line p0 (NEW LINE)
9 sem wait (&empty); // line pl
10 put (1) // line p2
11 sem post (&full); // line p3
12 sem post (amutex); // line p4 (NEW LINE)
159 }
14 4§
15
{Cont.)
q TCSS422: Operating Systems [Spring 2021
Spring 2021 School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma s

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION - 2

(Cont.)
16 wvoid *consumer (void *arg) {
g7 ala (il
18 for (1 = 0: i< loops: =:dxx) o
19 sem wait (amutex); (NEW LINE)
20 sem wait (&full);
21 int tmp = get():
22 sem post (&empty);
23 sem_post (amutex) ; (NEW LINE)
24 printf("%d\n", tmp);
25 }
26}
q TCSS422: Operating Systems [Spring 2021
Spring 2021 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma

B.18

Slides by Wes J. Lloyd

5/11/2021

B.9

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

EXECUTION FLOW

= With one producer, one consumetr
=Consumer acquires mutex (the lock)
=Consumer calls sem_wait() to wait for data

CPU
Still has mutex (the lock)

=Producer tries to acquire mutex (the lock)

*Producer becomes stuck in deadlock

Consumer is waiting for data, and will never
release the mutex

*No data available, consumer blocks are yields the

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

MULTITHREAD P/C W/ SEMAPHORES

® Lock should only protect put(), get()

1 sem t empty;
2 sem t full;
3 sem t mutex;
4
5 void *producer (void *arg) {
[int i;
7 for (i = 0§ 1 < Jloops: d++) 4
8 sem _wait (&empty); /f line pl
9 sem wait (amutex); // line pl.5 (MOVED MUTEX HERE..)
10 put (1) // line p2
11 sem post (amutex); // line p2.5 (.. AND HERE)
5, sem post (&full); // line p3
18 }
14 }
15
(Cont.)
q TCSS422: Operating Systems [Spring 2021
Spring 2021 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma 820

Slides by Wes J. Lloyd

5/11/2021

B.10

TCSS 422: Operating Systems [Spring 2021]

School of Engineering and Technology
UW-Tacoma

= Try it out...

MULTITHREAD P/C W/ SEMAPHORES - 2

(Cont.)
16 void *consumer(void *arg) {
) int i;
18 for (i = 0; i < loops; i++) {
19 sem wait (&full); // line cl
20 sem wait (&mutex); // line c¢l1l.5 (MOVED MUTEX HERE.)
21 int tmp = get () L line €2
22 sem_post (&mutex) ; // line ¢2.5 (.. AND HERE)
23 sem post (&empty) 7 // line c3
24 printf (“$d\n”, tmp):
25 }
26}
27
28 int main(int arge, char *argv([]) {
29 il
30 sem init (&empty, 0, MAX):; // MAX buff ith
31 sem_init(&full, 0, 0); W
32 sem_init (&mutex, 0, 1); // mutex=1
33 /o
34 }
q TCSS422: Operating Systems [Spring 2021
SRIDER02L School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma B2t

" Insert

= Read

CONCURRENT DATA STRUCTURES

® Concurrent data structures ideally will:
= Ensure atomicity of writes

= Enable multiple synchronous reads
As long as elements being read are not concurrently changed

® Concurrent linked list, use a Reader-Writer Lock

Should support concurrent reads if not being changed
Semaphores: good for tracking concurrent reads

Has traditional critical section which must not be multiply entered

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.22

Slides by Wes J. Lloyd

5/11/2021

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

CONCURRENT LIST WITH SEMAPHORES

® Multiple readers can acquire a lock

= Writer must wait until all readers finish
1 typedef struct _rwlock t {
2 sem t lock; // binary
3 sem_t writelock; // 1
4 int readers; 1k
5 } rwlock_t;
6
1 void rwlock init(rwlock t *rw) {
8 rw->readers = 0;
9 sem init (&rw->lock, 0, 1):
10 sem init (erw->writelock, 0, 1);
11)
12
13 wvoid rwlock acquire readlock(rwlock t *rw) {
14 sem wait (&rw->lock);
1.5
q TCSS422: Operating Systems [Spring 2021
ERLpERI2T School of Er:)gineerigngyand Te£h?10|oggy, Un]iversity of Washington - Tacoma 823

CONCURRENT LIST WITH SEMAPHORES - 2

15 rw->readers++;

16 if (rw->readers == 1)

17 sem wait (eérw->writelock); // first reader acquires writelock
18 sem post (&rw->lock) ;

19

20

21 wvoid rwlock release readlock(rwlock t *rw) |
22 sem_wait (&rw->lock);

23 rw->readers—-;

24 if (rw->readers == 0)

25 sem}ost(&rw—>writelock); // last reader releases writelock
26 sem post (&rw->lock) ?

27 B

28

29 wvoid rwlock acquire writelock(rwlock t *rw) |{
30 sem wait (erw->writelock);

31)

32

33 wvoid rwlock_release_writelock(rwlock t *rw) {
34 sem post (&rw->writelock);

35}

Spring 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

B.24

Slides by Wes J. Lloyd

5/11/2021

B.12

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

READER-WRITER LOCK

® Fairness problem

= With many readers, it becomes difficult for a writer to
obtain the lock

= One improvement is to prevent more readers from reading
once a writer is waiting for the lock

= How could we implement this improvement?

TCSS422: Operating Systems [Spring 2021]

SRIDER02L School of Engineering and Technology, University of Washington - Tacoma

DINING PHILOSOPHERS PROBLEM

m Classic computer science problem

® Possible job interview question

= Philosophet’s
1. Think

2. Pick up forks (wait if not available)
3.

4. Put down forks

Eat

TCSS422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.26

Slides by Wes J. Lloyd

5/11/2021

B.13

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

DINING PHILOSOPHERS - 2

= P- Philosopher
® f- fork (eating utensil)

= Key challenges
*There is no deadlock .
= No philosopher starves
= Concurrency is high . .
Forks get used as much as possible

Philosophers have plenty of eating

opportunities

TCSS422: Operating Systems [Spring 2021]

B.27
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

DINING PHILOSOPHERS - 3

® Philosophers:

(1Y {
think() ;
getforks()
eat(};
putforks() ;

}

® Fork helper functions

/ helper functions

int left(int p) { return p; }
int right{int p) {

return {p + 1) % 5;
}

® Fork on left: left(P1) = f1
® Fork on right: right(P1) = f2

TCSS422: Operating Systems [Spring 2021]

B.28
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

Slides by Wes J. Lloyd

5/11/2021

B.14

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

® Try this:

DINING PHILOSOPHERS - 4

® |f we just protect the forks with semaphores:

void getforks() {
sem_wait(forks[left(p)1);
sem_wait(forks[right(p)1);

}

void putforks() {
sem_post(forks[left(p)1);
sem_post(forks[right(p)]);

}

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

PO

P1

P2

P3

P4

® Complete the table

Philosopher

DINING PHILOSOPHERS - 5

(ea R | void getforks() {

think(): sem_wait(forks[left(p)1);
getforks(); sem_wait(forks[right(p)1);
eat(); }
putforks() -

} void putforks() {

sem_post(forks[left(p)1);
sem_post(forks[right(p)1);

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.30

Slides by Wes J. Lloyd

5/11/2021

B.15

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

DINING PHILOSOPHERS - 5

void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

= DEADLOCK: All Philosophers Starve! |}

void putforks(Q {
Philosopher LEFT RIGHT

sem_post(forks[Teft(p)]1);
sem_post(forks[right(p)1);

PO acquires fO waits for f1

P1 acquires f1 waits for f2

P2 acquires f2 waits for f3 .
P3 acquires f3 waits for f4
P4 acquires f4

B.31

Spring 2021 TCSS422: Ope _E:

School of Engi —
L

-

ALTERNATE PHILOSOPHER

= We need another approach to acquiring forks
® Consider which fork philosophers grab first
= What if we have a alternate-handed philosopher?

void getforks() {
if (p==4){
sem_wait(forks[right(p)]
sem_wait(forks[left(p)])
} else {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

)_ ;

}

}

m Solves the Dining Philosopher's problem !!!
= Remember that one philosopher grabs a different fork

TCSS422: Operating Systems [Spring 2021]

B.32
School of Engineering and Technology, University of Washington - Tacoma

Spring 2021

Slides by Wes J. Lloyd

5/11/2021

B.16

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

ALTERNATE PHILOSOPHER - 2

void getforks() {
if (p==4){

sem_wait(forks[right(p)]);

m P3 eats! Solves deadlock }elset

sem_wait(forks[left(p)1);

sem_wait(forks[Teft(p)1);

sem_wait(forks[right(p)1);

Philosopher LEFT RIGHT) }
PO acquires fO waits for f1
P1 acquires f1 waits for f2
P2 acquires f2 waits for f3 . .
P3 acquires f3 acquires f4,
eats...
P4 Waits for fO . .
" TCSS422: O ting Systi [Spring 2021]
SRIDER02L School of Er’:;i:\aelenrigngy::dm‘lf‘ech?\ZToggy, University of Washington - Tacoma B33

SEMAPHORE IMPLEMENTATION

B Semaphores can be built using locks and conditions
= pthread_mutex_t
= pthread_cond_t

E Linux implementation
= Does not track negative counter values

= Easier to implement

= Zemaphore

TCSS422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.34

Slides by Wes J. Lloyd

5/11/2021

B.17

TCSS 422: Operating Systems [Spring 2021]

School of Engineering and Technology
UW-Tacoma

SEMAPHORE IMPLEMENTATION - 2

1 typedef struct _ Zem t {

2 int value;

3 pthread cond t cond;

4 pthread mutex t lock:

5 } Zem t;

6

7 // only one thread can call this
g void Zem_init(Zem t *s, int value) {
S s->value = value;

10 Cond_init (&s->cond);

11 Mutex init (&s->lock);:

12 |5

13

14 wvoid Zem _wait(zZem t *s) {

15 Mutex lock (&s->1ock) ;

16 while (s->value <= 0)

17 Cond wait (&s->cond, &s->lock);
18 s—>value--;

19 Mutex unlock(a&s->lock);

205

22 void Zem post(Zem t *s) {

23 Mutex lock(&s->lock);

24 s—>value++;

25 Cond_signal (&s->cond) 7

26 Mutex unlock(&s->lock);

27 1}

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

SEMAPHORES SUMMARY

® Provide one construct for both concurrency features

= Binary semaphore: provides basic mutex lock
Ensures mutual exclusion in critical sections

= Condition semaphore: Synchronize one or more threads
which need to wait for something to happen

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

m After seeing Locks, Conditions, and Semaphores,
Which do you like better?

Spring 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

B.36

Slides by Wes J. Lloyd

5/11/2021

B.18

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology

UW-Tacoma

QUESTIONS

TCSS422: Operating Systems [Spring 2021]

Springj2021 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

5/11/2021

B.19

