TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

TCSS 422: OPERATING SYSTEMS

I T R T T

Semaphores

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

5/11/2021

OBJECTIVES

= Semaphores - API
= Uses
= Reader/Writer Locks

= Dining Philosophers

TCS5422: Operating Systems [Spring 2021]
il o T T T o e A S T = e 82

ANOTHER APPROACH TO CONCURRENCY

= We’'ve looked at Locks (ch. 28) and CondItlons (ch. 30) to
provide atomicity in critical sections for concurrency

= Now we’ll look at “semaphores”

= Provide same functionality

= With different “packaging”

Spring 2021

TCS5422: Operating Systems [Spring 2021] os
School of Engineeri Technology, University i Tacoma

THE SEMAPHORE

mSemaphores (struct in Linux):

= Contains:

ELock
®Integer: (essentially a counter)
m List: (thread wait list)

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ o ‘

SEMAPHORE API

= sem_init():

1 #include <semaphore.h>
2 sem_t s:
3 sem_init(s&s, 0, 1); // initialize s to the value

= |nitializes new semaphore:

= First param- address of a semaphore
Second param: O- single process, 1- multiprocess
“1” can be used with fork() to synchronize processes
Third param: initial value of counter

spring 2021 TcssAlzz;Ope_mingSystems[Springzun!) ‘ us ‘

School o Technology, y i Tacoma

SEMAPHORE API - 2

= sem_wait():
= Decrements the value of the semaphore counter,
and returns

= Adds thread to wait queue if counter <= 0
and blocks it

int sem wait(sem t *s) {
decrement the value of semaphore s by one
wait if value of semaphore s is negative

s wn e

}

=The negative value corresponds to the number of queued,
waiting threads

spring 2021 TCSS422: Operating Systems [Spring 2021] ‘ s ‘

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

B.1

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

SEMAPHORE API - 3

= sem_post():
= Increments the semaphore counter by 1.
= Awakens a thread on the wait queue (if any)
(when counter < 0)

School of Engineering and Technology, University of Washington - Tacoma

1 int sem post(sem t *s) {
2 increment the value of semaphore s by one
3 if there are one or more threads waiting, wake one
4}
Spring 2021 TCS5422: Operating Systems [Spring 2021] ‘ o ‘

5/11/2021

SEMAPHORE AS A LOCK

= What should the value of X be below?
= Consider two threads entering this code,
one immediately after the other
= What should the first thread do?
=The second thread do?

sem_t m;

sem_init(&m, 0, X); // initialize semaphore to X
sem_wait(&m); // similar to lock

// critical section goes here

sem_post(&m); // similar to unlock

Spring 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 88 ‘

TWO THREADS AND A SEMAPHORE

Value | Thread 0 State Thread 1 State.

o Semaphore S Running. Ready
Y call sem _wait() Running Ready

as a lock: * 0 | semwaicq retruns Running Ready
0 | (crit set: begin) Running Ready

0 Interrupt; Switch — T1 Ready Running

0 Ready | call sem wait() Running

-1 Ready decrement sem Running

-1 Running | Switch ~ 10 sleeping

-1 (crit sect: end) Running sleeping

-1 | call sem post() Running sleeping

» o | incrononc sem Runing leeping

0 wake (T1) Running Ready

0 sem_post () returns Running Ready

0 Interrupt; Switch — T1 Ready Running

0 Ready | sem wait() retruns Running

[Ready call sem post() Running

i Ready | sem post() returns Running

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ * ‘

SEMAPHORE AS A CONDITION VARIABLE

mSemaphores can be thought of as “mutants”
=They can be used as locks, or condition variables

= Consider an example

Spring 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ s ‘

= What should be the value of X ?

1 semt s;

2

3 void *

4 child(void *arg) {

5 printf("child\n");
7 LL

8 1}

9

10 int

init(ss, 0, X); what should X be
printf("parent: begin\n");

14 pthread t c;

15 pthread_create(c, NULL, child, NUL

16 » sem wait (&s): 2 for child

17 printf ("parent: end\n");

18 et ;

A &

SEMAPHORE AS A CONDITION VARIABLE -2

Spring 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

ORDERING OF EXECUTION - 1 OF 2

= Parent calls sem_wait() before child calls sem_post()

School of Engineering and Technology, University of Washington - Tacoma

Value | Parent State Child State
0 |create(child) Running | (Child exists; is runnable) Ready
0 call sem wait() Running Ready
1 decrement sem Running Ready
-1 (sem < 0)—sleep sleeping Ready
a9 Switch.Child sleeping | child runs Running
a1 sleeping | call sem post () Running
0 sleeping | increment sem Running
0 Ready wake (Parent) Running
0 Ready | sem post() returns Running
0 Ready Interrupt; Switch-Parent Ready
0 |sem wait() retruns Running Ready
Spring 2021 TCS$422: Operating Systems [Spring 2021] ‘ a2 ‘

Slides by Wes J. Lloyd

B.2

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

5/11/2021

ORDERING OF EXECUTION - 2 OF 2

= Child runs, calls sem_post() before parent calls sem_wait()

Value | Parent State Child State
0 |[create(child) Running | (Child exists; is runnable) Ready
0 Interrupt; switch-Child Ready child runs Running
0 Ready | call sem post() Running
1 Ready increment sem Running
1 Ready wake (nobody) Running
1 Ready | sem post() returns Running
1 |parent runs Running | Interrupt; Switch-Parent Ready
1 call sem wait() Running Ready
0 decrement sem Running Ready
0 (5em<0) —awake Running Ready
0 |sem wait() retruns Running Ready

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

PRODUCER/CONSUMER W/ SEMAPHORES

= Producer: put()
= Consumer: get()
= With MAX=4, 1 consumer thread. 1 producer thread:

1 int buffer(MAX];
2 int £ill = 0;
3 int use =
4
5 put(int value) {
6 buffer(fill] = value; 1
7 £ill = (£i11 + 1) % MAX; 1
8 1}
9
10 int get() {
11 int tmp = buffer[use]; ne g
12 use = (use + 1) % MAX;
13 return tmp;
14)
Spring 2021 TCSS422: Operating Systems [Spring 2021] ‘ 1

School of Engineering and Technology, University of Washington - Tacoma

PRODUCER/CONSUMER W/ SEMAPHORES - 2
1 sem_t empty;
2 sem_t full;
: &
4 *producer (void *arg) {
5 is
6 for (i = 0; i< loops: i++) {
7 sem_wait (sempty) ;
8 put(i);
5 sem_post (s£ull) ;
10 }
1}
12
13 void *consumer(void *arg) {
14 int i, tmp = 0;
15 while (tmp != -1) {
16 sem_wait (sfull);
17 tmp = get ();
18 sem_post (sempty) ;
19 printf("sd\n", tmp);
20)
21)
22
TCSS422: Operating Systems [Spring 2021]
SRl School of Engineering and Tec[hzolctggy, Ur\!versi(yu!Washing(un—Ta:oma ‘ 815 ‘

PRODUCER/CONSUMER W/ SEMAPHORES - 3

21 int main(int arge, char *argv(l) {
22 v/

23 sem_init (sempty, 0, MAX); RX b t eq
24 sem_init (sfull, 0, 0); and 0

25 3

26)

= This code is sufficient for any size buffer with
1 producer, 1 consumer

= Try it out
= But what happens if we add multiple producers and
consumers?

= Try it out

= Must consider critical sections

TCS5422: Operating Systems [Spring 2021]

il ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma ‘ 816

MUTUAL EXCLUSION

= Which part of the code is the critical section?

MULTI THREAD P/C SEMAPHORES W/

School of Engineering and Technology, University of Washington - Tacoma

1 sem t empty;
2 sem t full;
3 sem_t mutex;
4
5 void *producer(void *arg) {
6 int iz
7 for (i = 0; i < loops; i++) {
8 sem_wait (smutex) ;
9 sem_wait (sempty) 7
10 put(i);
11 sem post (&full) ;
12 sem_post (smutex) 7
13)
14)
15
(Cont.)
spring 2021 TCS5422: Operating Systems [Spring 2021] ‘ 017 ‘

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION - 2

(Cont.)
16 void *consumer(void *arg) {
17 int i;
18 for (i = 0; i < loops; i++) {
19 sem_wait (smutex);
20 sem_wait (&full) ;
21 int tmp = get();
22 sem_post (sempty) ;
23 sem_post (smutex) ;
24 printf("$d\n", tmp):
25)
26}
Spring 2021 TCSS422: Operating Systems [Spring 2021] ‘ 518

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

B.3

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

EXECUTION FLOW

= With one producer, one consumer
=Consumer acquires mutex (the lock)
=Consumer calls sem_wait() to wait for data

CPU
Still has mutex (the lock)
=Producer tries to acquire mutex (the lock)
=Producer becomes stuck in deadlock

Consumer is waiting for data, and will never
release the mutex

=No data available, consumer blocks are yields the

TCS5422: Operating Systems [Spring 2021]
SRl AT o T B i oy ATt A T T

5/11/2021

MULTITHREAD P/C W/ SEMAPHORES

= Lock should only protect put(), get()

1 sem_t empty;
2 sem t full;
3 sem_t mutex;
4
5 void *producer (void *arg) {
6 int i;
7 f (1 =0; i< loops; i++) {
8 sem_wait (sempty) ; / line p
9 sem_wait (&mutex); // line pl.5 (MOVED MUTEX HERE..)
10 put(i); line p2
11 sem_post (&mutex) ; (.. AND HERE)
12 sem_post (&full) ;
13 }
14)
15
(Cont.)
Spring 2021 TCS$422: Operating Systems [Spring 2021] ‘ 520 ‘

School of Engineering and Technology, University of Washington - Tacoma

MULTITHREAD P/C W/ SEMAPHORES - 2

School of Engineering and Technology, University of Washington - Tacoma

= Try it out...
(Cont.)
16 void *consumer(void *arg) {
17 int i
18 (=07 i< loops; i++)
19 sem wait (&full); e c
20 sem_vait (smutex); // line c1.5 (MOVED MUTEX HERE.)
21 int tmp = get(); ine c2
22 sem_post (smutex) ; 2.5 (. AND HERE
23 sem_post (sempty) ; 3
24 printf (“#d\n”, tmp) ;
25)
6 i)
27
28 main(int arge, *argvil) {
29 e
30 sem_init(sempty, 0, MAX); / =
31 sem_init(sfull, 0, 0);
32 sem_init (smutex, 0, 1); a lock
33 /"=
34)
spring 2021 TCSS422: Operating Systems [Spring 2021] ‘ ot ‘

CONCURRENT DATA STRUCTURES

= Concurrent data structures ideally will:
= Ensure atomicity of writes
= Enable multiple synchronous reads
As long as elements being read are not concurrently changed

= Concurrent linked list, use a Reader-Wrlter Lock
= Insert
Has traditional critical section which must not be multiply entered
= Read
Should support concurrent reads if not being changed
Semaphores: good for tracking concurrent reads

TCS5422: Operating Systems [Spring 2021]

il ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma ‘ 822 ‘

= Multiple readers can acquire a lock
= Writer must wait until all readers finish

CONCURRENT LIST WITH SEMAPHORES

School of Engineering and Technology, University of Washington - Tacoma

1 struct _rwlock_t {
2 sem_t lock; 77 bir
3 sem_t writelock:
4 int readers; /7 ¢
5} rwlock_t:
6
7 void rwlock_init(rwlock_t *rw) {
8 rw->readers = 0;
9 sem_init (sxw->lock, 0, 1):
10 sem_init (sxw->writelock, 0, 1);
1
12
13 void rwlock_acquire_readlock (rwlock_t *rw) {
14 sem_wait (&rw->Tock) ;
15
spring 2021 TCSS422: Operating Systems [Spring 2021] ‘ . ‘

CONCURRENT LIST WITH SEMAPHORES - 2

School of Engineering and Technology, University of Washington - Tacoma

15 rw->readers++;
16 if (rw->readers == 1)
17 sem_wait (sxw->writelock) ; rst reader acquires e
18 sem_post (&rw->1ock) ;
19)
20
21 void rwlock_release_readlock(rwlock_t *rw) {
22 sem_wait (srw->Tock) ;
23 rw->readers--;
24 if (rw->readers == 0)
25 sem_post (sxw->writelock); // las re riteloc
26 sem_post (srw->1ock) ;
27 @
28
29 void rwlock acquire writelock(rwlock t *rw) {
30 sem_wait (sxrw->writelock) ;
31)
32
33 void rwlock release_writelock(rwlock t *rw) {
34 sem_post (&rw->writelock) ;
35}
Spring 2021 TCS5422: Operating Systems [Spring 2021] ‘ 520 ‘

Slides by Wes J. Lloyd

B.4

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

READER-WRITER LOCK

= Fairness problem
obtain the lock

once a writer is waiting for the lock
= How could we Implement this Improvement?

= With many readers, it becomes difficult for a writer to

= One improvement is to prevent more readers from reading

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

5/11/2021

DINING PHILOSOPHERS PROBLEM

= Classic computer science problem
= Possible job interview question

= Philosopher’s
1. Think

2. Pick up forks (wait if not available)
3. Eat

4. Put down forks

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

DINING PHILOSOPHERS - 2

= P- Philosopher
= f- fork (eating utensil)

= Key challenges
=There is no deadlock
= No philosopher starves
= Concurrency is high .

Forks get used as much as possible
- -
Philosophers have plenty of eating

opportunities

Spring 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

DINING PHILOSOPHERS - 3

= Philosophers:

m {
think() ;
getforks();
eat ()
putforks() ;

Fork helper functions

heTEet FREE e
int left(int p) { return p; }

int right(int

{
turn (p + 1) & 5;
)

= Fork on left: left(P1) = f1
= Fork on right: right(P1) = f2

}

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

DINING PHILOSOPHERS - 4

= |f we just protect the forks with semaphores:

void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

}

void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)1);

= Try this:

Spring 2021 Tc554lzz; Operating Systems [Spring 2021]

School o Technology, ity i Tacoma

Slides by Wes J. Lloyd

DINING PHILOSOPHERS - 5

1) ¢

void getforks() {

getforks();
eat ()
putforks() ;

RIGHT

= Complete the table

Phllosopher

void putforks() {

sem_post(forks[left(p)1);
sem_post (forks[right(p)1);

think() ; sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

PO

P1

P2

P3

P4

TCS5422: Operating Systems [Spring 2021]

Spring 2021 School of Engineering and Technology, University of Washington - Tacoma

B.5

TCSS 422: O

perating Systems [Spring 2021]

School of Engineering and Technology

UW-Tacoma

DINING PHILOSOPHERS - 5

void getforksO {
sem_wait(forks[left(p)1);
sem_wait(forks[right(p)1);

= DEADLOCK: All Philosophers Starve! [}

void putforksO {
sem_post(forks[left(p)1);

Phllosopher LEFT RIGHT sem_post (forks[right(p)1);
}

PO acquires fO waits for f1
P1 acquires f1 waits for f2
P2 acquires f2 waits for f3
P3 acquires f3 waits for f4
P4 acquires f4

Spring 2021 TCSS422: Ope -&

School of Engi

Zi

5/11/2021

ALTERNATE PHILOSOPHER

= We need another approach to acquiring forks
= Consider which fork philosophers grab first
= What if we have a alternate-handed philosopher?

void getforks() {
if (p==4){
sem_wait(forks[right(p)1);
sem_wait(forks[Teft(p)1);
} else {
sem_wait(forks[Teft(p)1);
sem_wait(forks[right(p)1);

}

= Solves the Dining Philosopher's problem !!!
= Remember that one philosopher grabs a different fork

Spring 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 832

=p

Phllosopher LEFT RIGHT

ALTERNATE PHILOSOPHER - 2

void getforksO) {
if (p == 4) {
sem_wait(forks[right(p)1);
sem_wait(forks[left(p)]);

} else {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

3 eats! Solves deadlock

PO acquires fO waits for f1
P1 acquires f1 waits for f2
P2 acquires f2 waits for f3 ‘
P3 acquires f3 acquires f4, |
eats...
P4 Waits for fO ‘
S e Byt Wetnton T [=]

SEMAPHORE IMPLEMENTATION

= Semaphores can be built using locks and conditions
= pthread_mutex_t
= pthread_cond_t

® Linux implementation
= Does not track negative counter values

= Easier to implement

= Zemaphore

Spring 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ B34

SEMAPHORE IMPLEMENTATION - 2

1 ct _zem t {
2 e

3 pthread_cond_t cond;
4 pthread mutex_t lock;
5) zemt;

6

7 nly c 1read can

8 void zem init(zem t *s, int value) {
B s->value = value;

10 Cond_init (ss->cond) ;
1 Mutex_init(ss->lock);

em_wait(zem t *s) {

16 umils (s->value < 0)
17 Cond_wait (ss->cond, &s->lock);
1 sovalue—
15 sces unlock(ss->lock);
20 }
22 void zem_post(zem t *s) {
23 Mutex_lock (ss—>lock) s
24 s->value++;
25 cond_signal(ss->cond) s
26 wutex unlock(is-slock);
27)
TCS5422: Operating Systems [Spring 2021]
Spring 2021 School of Engineering and Technology, University ington -Tacoma ‘ o ‘

SEMAPHORES SUMMARY

= Provide one construct for both concurrency features

= Binary semaphore: provides basic mutex lock
Ensures mutual exclusion in critical sections

= Condition semaphore: Synchronize one or more threads
which need to wait for something to happen

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= After seeing Locks, Conditions, and Semaphores,
Which do you like better?

Spring 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 836

Slides by Wes

J. Lloyd

B.6

TCSS 422: Operating Systems [Spring 2021]
School of Engineering and Technology
UW-Tacoma

QUESTIONS

Spring 2021

TCS8422: Operating
School of Engineering

Slides by Wes J. Lloyd

5/11/2021

B.7

