
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.1Slides by Wes J. Lloyd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

Introduction to Concurrency,
Linux Thread API, Locks,

Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology
University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.2

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 27, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

April 27, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.4



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s 
class (57 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.90  ( - previous 6.67) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.52 ( - previous 5.53)

April 27, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

MATERIAL / PACE

 Would you review about L inux nice-value?
 Nice/renice command is used to influence a job’s priority in Linux
 Nice predates the CFS scheduler

 Top shows nice values
 Nice vals w/ ps:  ps ax -o pid,ni,cmd,%cpu, pri
 Nice values: -20 (HIGH priority) to 19 (LOW priority)
 Default value is 0
 Nice value influences the vruntime value of a job
 vruntime is a weighted time measurement
 Nice weights the calculation of vruntime within a runqueue

to adjust priority of a job (+ / -)
 Influences job’s position in rb-tree

 Nice is used to launch a new job with a priority adjustment
 Renice is used to adjust priority of an existing job

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.6

FEEDBACK



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.4Slides by Wes J. Lloyd

 Find PID for Vir tualBox

ps ax -o pid,ni,cmd,%cpu,pri | grep virtualbox

 Monitor process priority in top

top –d .1

 Adjust process priority using renice:

# High priority

sudo renice –n -20 –p <pid>

# Default priority

sudo renice –n 0 –p <pid>

# Low priority

sudo renice –n 19 –p <pid>

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.7

NICE / RENICE

 How do lottery or stride schedulers optimize a job’s
response t ime and turnaround time?

 These schedulers are designed to distr ibute t ime to jobs based 
on the number of tickets a job has

 The user is responsible for assigning tickets
 Resource sharing wil l mimic round-robin scheduling if al l  jobs 

have the exact same number of tickets
 Stride schedule will achieve round-robin like fairness more quickly
 Lottery scheduler requires more scheduling events & time

 The round robin scheduler is excellent at job response time
 Each job shares the resource for a fixed time quantum

 Round robin schedulers may perform poorly with respect to 
job turnaround time
 The user could adjust the job’s # of tickets to improve the outcome

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.8

FEEDBACK - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.5Slides by Wes J. Lloyd

 I 'm stil l a l i ttle confused on the difference between Stride and 
CFS scheduler and what situations where one would be better 
than the other.
 Unlike FIFO, SJF, STCF, and RR, the Stride scheduler enables a job’s 

priority to be influenced dynamically based on the number of tickets 
it holds

 The stride scheduler provides an algorithm to share any resource
where there is a requirement to allow the user to influence a given 
job’s priority

 The Completely Fair Scheduler is the current process scheduler in
Linux (Ubuntu 20.04 LTS)

 It eliminates tickets in favor of a relative nice value

 Users can “nudge” the priority of a job, but not set priority directly

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.9

FEEDBACK - 3

 How does the system decide which scheduling class a 
thread/process has?

 By default jobs are of the “(TS) Time Sharing” class

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 
SCHED_BATCH
 TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:
 #class
ps –elfc

 #priority (nice value)
ps ax -o pid,ni,cls,pri,cmd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.10

FEEDBACK - 4



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.6Slides by Wes J. Lloyd

 I  was experiencing some connectivity issues when you were 
explaining embarrassingly parallel programs at f irst . What 
part of them is embarrassing in particular? 

 What is embarrassing is how easy it is for the programmer to
enable these jobs to execute in parallel  

 It is easy because there is no requirement to synchronize
shared memory

 Each thread works in isolation on an independent chunk of  
memory

 Why is it  called parallel? In my head, parallel would be the 
word for concurrent operations, leaving me a bit confused.

 Yes the processing occurs concurrently on independent data
 How do they relate to image manipulation?
 Image fi lters can be applied in parallel to sets of images

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.11

FEEDBACK - 5

 Bonus session: Tuesday April 27 starting at 6:30pm
 Approximately ~1 hour

 Will solve a series of example scheduling problems

 Focus on: FIFO, SJF, STCF, RR, MLFQ

 Video will be recorded and posted

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.12

BONUS SESSION –
EXAMPLE SCHEDULER PROBLEMS



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.7Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Str ings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.13

OBJECTIVES – 4/27

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.14

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.8Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.15

OBJECTIVES – 4/27

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Friday April 30th at 11:59pm

 Grace period ti l Sunday May 2nd at 11:59 ** AM **

 Late submissions til Tuesday May 4th at 11:59pm

 Link:

 http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021_quiz_1.pdf 

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.16

QUIZ 1



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.9Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.17

OBJECTIVES – 4/27

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.18



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.10Slides by Wes J. Lloyd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.19

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

THREADS - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.11Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

PROCESS AND THREAD METADATA

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.12Slides by Wes J. Lloyd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

POSSIBLE ORDERINGS OF EVENTS



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.13Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.26

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.14Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplication of code/heap, lightweight execution threads

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.28

PROCESSES VS. THREADS



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.15Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.29

OBJECTIVES – 4/27

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

RACE CONDITION



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.16Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.31

OBJECTIVES – 4/27

 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in critical sections
 These sections must be mutually exclusive

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

CRITICAL SECTION



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.17Slides by Wes J. Lloyd

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

LOCKS

WE WILL RETURN AT 
4:53PM

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma L9.34



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.18Slides by Wes J. Lloyd

CHAPTER 27 -
LINUX

THREAD API

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.35

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.36

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.19Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

THREAD CREATION

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

PTHREAD_CREATE – PASS ANY DATA



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.20Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.39

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

WAITING FOR THREADS TO FINISH



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.21Slides by Wes J. Lloyd

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.41

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.42

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.22Slides by Wes J. Lloyd

 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

ADDING CASTS - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.23Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.45

OBJECTIVES – 4/27

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.24Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

LOCK INITIALIZATION



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.25Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

LOCKS - 3

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.50

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.26Slides by Wes J. Lloyd

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits)    (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released 
 Waits (l istens) for a “signal”   (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

CONDITIONS AND SIGNALS

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.27Slides by Wes J. Lloyd

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to 
execute when it should not.  (e.g. too early)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

CONDITION AND SIGNALS - 4



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.28Slides by Wes J. Lloyd

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.55

PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.29Slides by Wes J. Lloyd

CHAPTER 28 –
LOCKS

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.57

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.58

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.30Slides by Wes J. Lloyd

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

LOCKS - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.31Slides by Wes J. Lloyd

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

LOCKS - 3

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.62

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.32Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

LOCKS - 4

 Is this code a good example of “f ine grained parallelism”?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.33Slides by Wes J. Lloyd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .

April 9, 2020 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.66

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from 
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation 

lies someplace along
the trade-off space…



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.34Slides by Wes J. Lloyd

 Correctness
 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness
 Do all threads that compete for a lock have a fair chance 

of acquiring it?

Overhead

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

EVALUATING LOCK IMPLEMENTATIONS

What makes a 
good lock?

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

BUILDING LOCKS



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.35Slides by Wes J. Lloyd

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its  own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

HISTORICAL IMPLEMENTATION

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.70

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.36Slides by Wes J. Lloyd

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.71

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

DIY: CORRECT?



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.37Slides by Wes J. Lloyd

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will  “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.74

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.38Slides by Wes J. Lloyd

 Hardware support required for working locks
 Book presents pseudo code of C implementation 
 TEST-and-SET adds a simple check to the basic spin lock
 Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1
 Comparison is in the caller

 Can implement the C version (non-atomic) and have some 
success on a single-core VM

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally wil l deadlock, doesn’t miscount

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

DIY: TEST-AND-SET - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.39Slides by Wes J. Lloyd

 Correctness:
 Spin locks with atomic Test-and-Set: 

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting (< 1 time quantum)

 Performance is slow when multiple threads share a CPU

 Especially if “spinning” for long periods 

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

SPIN LOCK EVALUATION

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.78

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.40Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment
 Return value at location

 Adds a comparison to TestAndSet
 Textbook presents C pseudo code
 Assumption is that the compare-and-swap method runs atomically  

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 
 Upcoming in Chapter 32

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.41Slides by Wes J. Lloyd

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma L9.81

 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.42Slides by Wes J. Lloyd

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

LL/SC LOCK

 Two instruction lock

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

LL/SC LOCK - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.43Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.85

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29:  Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.86

OBJECTIVES – 4/27



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.44Slides by Wes J. Lloyd

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.87

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.88

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.45Slides by Wes J. Lloyd

 Add lock to the counter

 Require lock to change data

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.89

CONCURRENT COUNTER

 Decrease counter

 Get value

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.90

CONCURRENT COUNTER - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.46Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.91

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.92

PERFECT SCALING



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.47Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.93

OBJECTIVES – 4/27

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.94

SLOPPY COUNTER



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.48Slides by Wes J. Lloyd

 Idea of Sloppy Counter is to RELAX the synchronization 
requirement for counting

 Instead of synchronizing global count variable each time:
counter=counter+1
 Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically
reduces locking API overhead by trading-off split-second 
accuracy of the counter

 Sloppy counter: trade-off accuracy for speed
 It’s sloppy because it’s not so accurate (until the end)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.95

SLOPPY COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.96

SLOPPY COUNTER - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.49Slides by Wes J. Lloyd

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.97

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.98

SLOPPY COUNTER - EXAMPLE



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.50Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.99

OBJECTIVES – 4/27

 Simplification - only basic l ist operations shown

 Structs and initialization:

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.100

CONCURRENT LINKED LIST - 1



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.51Slides by Wes J. Lloyd

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.101

CONCURRENT LINKED LIST - 2

}

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.102

CONCURRENT LINKED LIST - 3



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.52Slides by Wes J. Lloyd

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.103

CONCURRENT LINKED LIST

 Init and Insert

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.104

CCL – SECOND IMPLEMENTATION



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.53Slides by Wes J. Lloyd

 Lookup

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.105

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.106

CONCURRENT LINKED LIST PERFORMANCE



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.54Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.107

OBJECTIVES – 4/27

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.108

MICHAEL AND SCOTT CONCURRENT QUEUES



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.55Slides by Wes J. Lloyd

 Remove from queue

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.109

CONCURRENT QUEUE

 Add to queue

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.110

CONCURRENT QUEUE - 2



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.56Slides by Wes J. Lloyd

 Questions from 4/22
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Chapter 26: Concurrency: An Introduction

 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter  28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter  29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.111

OBJECTIVES – 4/27

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.112

CONCURRENT HASH TABLE



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.57Slides by Wes J. Lloyd

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.113

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.114

CONCURRENT HASH TABLE



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.58Slides by Wes J. Lloyd

April 27, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L9.11
5

 Lock-free data structures in Java

 Java.uti l.concurrent.atomic package

 Classes:
 AtomicBoolean

 AtomicInteger

 AtomicIntegerArray

 AtomicIntegerFieldUpdater

 AtomicLong

 AtomicLongArray

 AtomicLongFieldUpdater

 AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html

April 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.116

LOCK-FREE DATA STRUCTURES



TCSS 422 A – Spring 2021
School of Engineering and Technology

4/27/2021

L9.59Slides by Wes J. Lloyd

QUESTIONS


