TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Introduction to Concurrency,
Linux Thread API, Locks,
Lock-based data structures &

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

il 27, 2Pl School of Engineering and Technology, University of Washington

OBJECTIVES - 4/27

= Questions from 4/22 |
® C Tutorial - I30inters, §trings, Exec in C
® Assighnment 1
B Quiz 1 - Active Reading Chapter 9
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021 19.2

Slides by Wes J. Lloyd L9.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCS5422 A 5 Assignments

Soring 2021
17 T
Home
Announcernents
Zoom * Upcoming Assignments
]
ke «¢ TCSS422- Online Daily Feedback Survey - 4/1
¥ Available until Apr'S at 11:59pm | Due Apr 5at10pm | /1 pts
Dlicriiccinne Psiw N -~ haelemeniimed sinmesss
a TCSS422: Computer Operating Systems [Spring 2021]
(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma 193
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 6 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
1 2 3 4 5 6 7 8 9 10
slow Just Right Fast
q TCSS422: Computer Operating Systems [Spring 2021]
apuli2ER02 School of Engineering and Technology, University of Washington - Tacoma L9.4

Lloyd

4/27/2021

L9.2

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (57 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.90 (T - previous 6.67)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.52 ({ - previous 5.53)

TCSS422: Computer Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.5

FEEDBACK

= Would you review about Linux nice-value?
* Nice/renice command is used to influence a job’s priority in Linux
= Nice predates the CFS scheduler
= Top shows nice values
=Nicevalsw/ ps: ps ax -o pid,ni,cmd, %cpu, pri
= Nice values: -20 (HIGH priority) to 19 (LOW priority)
= Default value is O
= Nice value influences the vruntime value of a job
*vruntime is a weighted time measurement
= Nice weights the calculation of vruntime within a runqueue
to adjust priority of a job (+ / -)
Influences job’s position in rb-tree
= Nice is used to launch a new job with a priority adjustment
= Renice is used to adjust priority of an existing job

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021 9.6

Slides by Wes J. Lloyd L9.3

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

NICE / RENICE

® Find PID for VirtualBox
ps ax -o pid,ni,cmd,%cpu,pri | grep virtualbox

® Monitor process priority in top

top -d .1

® Adjust process priority using renice:
High priority

sudo renice -n -20 -p <pid>

Default priority

sudo renice -n 0 -p <pid>

Low priority
sudo renice -n 19 -p <pid>

TCSS422: Operating Systems [Spring 2021] 9.7

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= How do lottery or stride schedulers optimize a job’s
response time and turnaround time?
® These schedulers are desighed to distribute time to jobs based
on the number of tickets a job has
® The user is responsible for assigning tickets
®m Resource sharing will mimic round-robin scheduling if all jobs
have the exact same number of tickets
= Stride schedule will achieve round-robin like fairness more quickly
= Lottery scheduler requires more scheduling events & time
® The round robin scheduler is excellent at job response time
= Each job shares the resource for a fixed time quantum
® Round robin schedulers may perform poorly with respect to
job turnaround time
= The user could adjust the job’s # of tickets to improve the outcome

TCSS422: Operating Systems [Spring 2021] 9.8
School of Engineering and Technology, University of Washington - Tacoma :

April 27, 2021

Slides by Wes J. Lloyd L9.4

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

FEEDBACK - 3

® I'm still a little confused on the difference between Stride and
CFS scheduler and what situations where one would be better
than the other.
= Unlike FIFO, SJF, STCF, and RR, the Stride scheduler enables a job’s

priority to be influenced dynamically based on the number of tickets
it holds

= The stride scheduler provides an algorithm to share any resource
where there is a requirement to allow the user to influence a given
job’s priority

= The Completely Fair Scheduler is the current process scheduler in
Linux (Ubuntu 20.04 LTS)

= |t eliminates tickets in favor of a relative nice value

= Users can “nudge” the priority of a job, but not set priority directly

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 199

April 27, 2021

FEEDBACK - 4

= How does the system decide which scheduling class a
thread/process has?

m By default jobs are of the “(TS) Time Sharing” class

® Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

® How to show scheduling class and priority:

" #class
ps -elfc

" §priority (nice value)
Ps ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9.10

April 27, 2021

Slides by Wes J. Lloyd L9.5

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

FEEDBACK - 5

m | was experiencing some connectivity issues when you were
explaining embarrassingly parallel programs at first. What
part of them is embarrassing in particular?

® What is embarrassing is how easy it is for the programmer to
enable these jobs to execute in parallel

® |t is easy because there is no requirement to synchronize
shared memory

®m Each thread works in isolation on an independent chunk of
memory

= Why is it called parallel? In my head, parallel would be the
word for concurrent operations, leaving me a bit confused.

® Yes the processing occurs concurrently on independent data
= How do they relate to image manipulation?
® I[mage filters can be applied in parallel to sets of images

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021 19.11

BONUS SESSION -

EXAMPLE SCHEDULER PROBLEMS

® Bonus session: Tuesday April 27 starting at 6:30pm
= Approximately ~1 hour

®m Will solve a series of example scheduling problems
= Focus on: FIFO, SJF, STCF, RR, MLFQ

® Video will be recorded and posted

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 1912

April 27, 2021

Slides by Wes J. Lloyd L9.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

® Questions from 4/22
= _C Tutorial - Pointers, Strings, Exec in C |
= Assighment 1
® Quiz 1 - Active Reading Chapter 9
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.13

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
| = Assignment 1 |
u Quiz-l - Active Reading Chapter 9
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

19.14

Lloyd

4/27/2021

L9.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
L® Quiz 1 - Active Reading Chapter 9 |
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.15

QuIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

® Posted in Canvas
® Due Friday April 30t at 11:59pm

m Grace period til Sunday May 2" at 11:59 ** AM **

m Late submissions til Tuesday May 4t" at 11:59pm

= Link:

® http://faculty.washington.edu/wlloyd/courses/tcss422/

TCSS422_s2021_quiz_1.pdf

April 27, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.16

Lloyd

4/27/2021

L9.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
® Quiz 1 - Active Reading Chapter 9
| = Chapter 26: Concurrency: An Introduction |
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.17

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2021]

S nali2g202 School of Engineering and Technology, University of Washington -

Lioyd

4/27/2021

L9.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

THREADS

Process State: PC,
registers, SP, etc...

Process Multithreaded Process

Process

Single]
Threaded

Process State: PC, Thread | | Thread | | Thread
registers, SP, etc... State | | State || State

HARED WY

 Heap
&
1

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.19

THREADS - 2

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= What is an embarrassingly parallel program?

® Enables a single process (program) to have multiple “workers”
= This is parallel programming...

® Supports independent path(s) of execution within a program
with shared memory ...

® Threads share code segment, memory, and heap are shared

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.20

Slides by Wes J. Lloyd

4/27/2021

L9.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:

Program counter
Register contents

Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

SHARED ADDRESS SPACE

® Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB s ; 1KB
e heap segment:
e contains malloc'd data KB Heap
2KB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack 1) arguments to routines, Stack (1)
16KB return values, etc. 16KB
A Single-Threaded Two threaded
Address Space Address Space
. TCSS422: Operating Systems [Spring 2021]
April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma 1922

Lloyd

4/27/2021

L9.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

}

int

THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
#include <pthread.h>

void smythread(void +arg) {
printf ("$s\n", (char «) arg);
return NULL;

main(int argc, char *argv[]) {
pthread t pl, p2;
int rc;
printf ("main: begin\n"];
rc = pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);

hread create(&p2, NULL, mythread, "B"); assert(rc == 0);

// join waits for the threads to finish
rc =

thread_join(pl, NULL); assert(rc == 0);

rc = pthread join(p2, NULL); assert(rc == 0);
printf("main: end\n");
return 0;

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.23

Starts running
Prints ‘main: begin’

»Creates Thread 1
Creates Thread 2
Waits for T1

» Waits for T2

» Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS

Runs

» Prints ‘A’

Returns

Runs
Prints ‘B’

Returns

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

Slides by Wes J. Lloyd

4/27/2021

L9.12

TCSS 422 A — Spring 2021

School of Engineering and Technology

Starts running
Prints ‘main: begin’

Creates Thread 1

—= Creates Thread 2

Waits for T1

Waits for T2

Prints ‘main: end’

Runs
Prints ‘A’

Returns

Runs
Prints ‘B’
Returns

Returns immediately

POSSIBLE ORDERINGS OF EVENTS - 2

Returns immediately

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

—

Waits for T2

Prints ‘main: end’

What if execution order of
g events in the program matters?

Runs

Prints ‘A’

Returns

POSSIBLE ORDERINGS OF EVENTS - 3

Immediately returns

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.26

Slides by Wes J. Lloyd

4/27/2021

L9.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

COUNTER EXAMPLE

® Counter example

= A+ B: ordering
® Counter: incrementing global variable by two threads

m |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

PROCESSES VS. THREADS

® What’'s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

Process

Process State: PC,

Slides by Wes J.

registers, SP, etc...

B CodaSernent |
. Heap
*

| cods | data || fies | [coge || data || files |
Process | = :|
— : ;

Process State: PC, rngshnm| | stack | Ee;:slmsi ragishars rcgsmm|
registers, SP, etc... — sma—in

Cod

theoad ——

AN

singl-hreaded procass

| slack || slack]Fluﬂ]

IBE
& +—1 thirzad
¢

&

muitithreadad process

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.28

Lloyd

4/27/2021

L9.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

Questions from 4/22
C Tutorial - Pointers, Strings, Exec in C
Assignment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
| = Race condition |
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9.29

April 27, 2021

RACE CONDITION

® What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
0s Threadl Thread2 PC %eax counter
before critical section 100 0 50
mov 0x8049%9alc, %eax 105 50 50
add £0x1, %eax 108 51 50

save T1's state

restore T2's state 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0xl, %eax 108 51 50
mov %$eax, 0x8049%alc 113 51 5

save T2's state
restore T1's state 108 51 50
mov %eax, 0x804%alc 113 51

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9:30

April 27, 2021

Lloyd

4/27/2021

L9.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
® Quiz 1 - Active Reading Chapter 9
® Chapter 26: Concurrency: An Introduction
= Race condition
| = Critical section |
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.31

CRITICAL SECTION

® Code that accesses a shared variable must not be
concurrently executed by more than one thread

® Multiple active threads inside a critical section produce a
race condition.

m Atomic execution (all code executed as a unit) must be
ensured in critical sections

= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

19.32

Lloyd

4/27/2021

L9.16

TCSS 422 A — Spring 2021
School of Engineering and Technology

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smutex) :
balance = balance + 1; Critical section
unlock (&mutex) ;

(S IR VYR S I

® Counter example revisited

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.33

WE WILL RETURN AT

4:53PM

TCSS422: Operating Systems [Spring 2021]

S nali2g202 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/27/2021

L9.17

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

CHAPTER 27 -
LINUX
THREAD API

TCSS422: Operating Systems [Spring 2021]

A 22, 2P School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/27

= Questions from 4/22
= C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
® Quiz 1 - Active Reading Chapter 9
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
| = pthread_create/_join |
. pthread:mutex_Gck/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

April 27, 2021

Slides by Wes J. Lloyd L9.18

TCSS 422 A — Spring 2021
School of Engineering and Technology

THREAD CREATION

® pthread_create

#include <pthread.h>

int
pthread create(pthread t* thread,
const pthread attr t* attr,
void#* (*start_routine) (void*),
void#* arg) ;

® thread: thread struct

® attr: stack size, scheduling priority... (optional)

® start_routine: function pointer to thread routine

® arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.37

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>
typedef struct _ myarg_t {
» int a;
int b;
} myarg t;
void *mythread(void *arg) {
myarg t *m = (myarg t *) arg;
» printf (“%d %d\n”, m->»a, m-—>b):
NULL;
}
int main(int argc, char *argv[]) {
pthread t p;
ah i) 8 o ol
myarg_t args;
» args.a = 10;
args.b = 207

rc = pthread create(&4p, NULL, mythread, &args):

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

19.38

Slides by Wes J. Lloyd

4/27/2021

L9.19

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

I e B T

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m,
pthread create (&p, NULL, mythread, EOE)
Ak pthread join(p, (void **) a&m);
printf (*returned %d\n”, m);
e b

TCSS422: Operating Systems [Spring 2021]

Bypill ez, ez School of Engineering and Technology, University of Washington - Tacoma

19.39

WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr);

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Spring 2021]

A N . " . 19.40
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021

Slides by Wes J. Lloyd L9.20

TCSS 422 A — Spring 2021
School of Engineering and Technology

{

}

{

struct myarg {

};

void *worker(void *arg)

int main (int argc, char

int a; What will this code do?

int b;

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

Zﬁzgﬁz_gyzr%;wtpur’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
a=10 b=20

Segmentation fault (core dumped)

%

argv[D)

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a =
args.b =
pthread_
pthread_;
printf("
return 0

How can this code be fixed?

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.41

April 27,2021

{

}

{

struct myarg {

};

void *worker(void *arg)

int main (int argc, char

int a; How about this code?

int b;

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

$./pthread_struct
a=10 b=20

*

argv[l)

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&l, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2021]

s 22, A School of Engineering and Technology, University of Washington - Tacoma L9.42

Slides by Wes J. Lloyd

4/27/2021

L9.21

TCSS 422 A — Spring 2021
School of Engineering and Technology

ADDING CASTS

® Casting
B Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

® Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(pl, &plval);

® Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument

is of type fint **’
extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.43

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

® return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021

L9.44

Slides by Wes J. Lloyd

4/27/2021

L9.22

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

Questions from 4/22

C Tutorial - Pointers, Strings, Exec in C
Assignment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition

= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join

. pthread_mutex=lock/=unIock/=tronck/=timeIock |

. pﬂwead:cond_wah/_ﬂgnaV_broadcast
Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.45

LOCKS

pthread_mutex_t data type
/usr/include/bits/pthread_types.h

// Global Address Space
static volatile int counter = 0;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;7i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;
}

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.46

Lloyd

4/27/2021

L9.23

TCSS 422 A — Spring 2021

School of Engineering and Technology

® Example w/o initialization & error checking

LOCKS - 2

® Ensure critical sections are executed atomically-as a unit

= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

pthread mutex t lock;
pthread mutex lock(&lock);
x = x + 1; // or whatever your critical section is

pthread mutex unlock(&lock);

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.47

LOCK INITIALIZATION

®m Assigning the constant

‘ pthread mutex t lock = PTHREAD MUTEX TINITTIALIZER;

® API call:

int rc = pthread mutex init (&lock, NULL);
assert(rc == 0); // always check success!

® |nitializes mutex with attributes specified by 2" argument
® [f NULL, then default attributes are used

® Upon initialization, the mutex is initialized and unlocked

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.48

Slides by Wes J. Lloyd

4/27/2021

L9.24

TCSS 422 A — Spring 2021
School of Engineering and Technology

LOCKS -3

® Error checking wrapper

assert (rc == 0);

}

// Use this to keep ye¢ clean but check for failures
// Only use if exiting program is OK upon failure
void Pthread mutex lock(pthread mutex t *mutex) {

int rc = pthread mutex lock(mutex):;

® What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex t *mutex):;
int pthread mutex timelock (pthread mutex t *mutex,

struct timespec *abs timeout);

® trylock - returns immediately (fails) if lock is unavailable
® timelock - tries to obtain a lock for a specified duration

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.49

Slides by Wes J.

OBJECTIVES - 4/27

Questions from 4/22
C Tutorial - Pointers, Strings, Exec in C
Assignment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/ timelock
|__= pthread_cond_wait/_signal/_broadcast |
® Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021

L9.50

Lloyd

4/27/2021

L9.25

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

CONDITIONS AND SIGNALS

® Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond);

" pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9:51

April 27, 2021

CONDITIONS AND SIGNALS - 2

*

int pthread_cond_signal(pthread_cond_t cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

m pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

m pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9:52

April 27, 2021

Slides by Wes J. Lloyd L9.26

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONDITIONS AND SIGNALS -3

= Wait example:

while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+ b;
pthread mutex unlock (&lock) ;

‘ pthread mutex lock (&lock) ;

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD COND_INITIALIZER;

® wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then r
® When initialized, another thread signals

leased bv this code)

State variable set,

pthread mutex lock(&lock):
initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(&lock);

to proceed above.

Enables other thread(s)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.53

CONDITION AND SIGNALS - 4

thread mutex lock (&lock) ;
while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+ b;
pthread mutex_ unlock (&lock) ;

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD COND_ INITIALIZER;

® Why do we wait inside a while loop?

® The while ensures upon awakening the condition is rechecked

= A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE* *
= Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 27, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.54

Slides by Wes J. Lloyd

4/27/2021

L9.27

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

PTHREADS LIBRARY

® Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

m List of pthread manpages
= man -k pthread

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.55

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cc) $(cFLAGS) $A -0 S@

clean:
$(RM) -f $(binaries) *.o

® Example builds multiple single file programs

= All target
® pthread_mult

= Example if multiple source files should produce a single executable
® clean target

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9:56

April 27, 2021

Slides by Wes J. Lloyd L9.28

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

CHAPTER 28 -

TCSS422: Operating Systems [Spring 2021]

il 226, 20 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/27

= Questions from 4/22
= C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021 19.58

Slides by Wes J. Lloyd L9.29

TCSS 422 A — Spring 2021
School of Engineering and Technology

® Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

| balance = balance + 1;

m A “critical section”:

balance

o Wk

lock_t mutex; // some globally-allcocated lock ‘mutex’

lock (&mutex) ;

= balance + 1;

unlock (&mutex) ;

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

m States

LOCKS - 2

® Lock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

®E Lock variables store the state of the lock

= Locked (acquired or held)

= Unlocked (available or free)

® Only 1 thread can hold a lock

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

Slides by Wes J. Lloyd

4/27/2021

L9.30

TCSS 422 A — Spring 2021
School of Engineering and Technology

LOCKS -3

"pthread mutex_lock(&lock)
= Try to acquire lock
= |If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

® No other thread can acquire the lock before the owner
releases it.

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

OBJECTIVES - 4/27

® Questions from 4/22

® C Tutorial - Pointers, Strings, Exec in C

® Assighnment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition

= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks

= Introduction,|Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

Slides by Wes J. Lloyd

4/27/2021

L9.31

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

LOCKS - 4

® Program can have many mutex (lock) variables to
“serialize” many critical sections

®m Locks are also used to protect data structures

= Prevent multiple threads from changing the same data
simultaneously

= Programmer can make sections of code “granular”

Fine grained - means just one grain of sand at a time through an
hour glass

= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.63

FINE GRAINED?

® |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tlock(&lock);

a = b++;

b =a*c;

*d = a + b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

ListNode *node = mylist->head;

Int i=0

while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;

node->end = *e;
node = node->next;
i++

} -

e=¢e-1i;

pthread_matex_un1ock(&1ock);

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.64

Slides by Wes J. Lloyd L9.32

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b=a*c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a+ b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 .

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9.65

April 27, 2021

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED COARSE-GRAINED
Many Lock (kernel) calls Few Lock (kernel) calls
More overhead from Low overhead from

excessive locking minimal locking

More parallelism Less parallelism
Higher code complexity Low code complexity
& debugging & simpler debugging

Every program
implementation
lies someplace along
the trade-off space...

TCSS422: Operating Systems [Spring 2021]

April 9, 2020 School of Engineering and Technology, University of Washington - Tacoma

L4.66

Lloyd

4/27/2021

L9.33

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

EVALUATING LOCK IMPLEMENTATIONS

What makes a
® Correctness good lock?

=" Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

NS

® Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

® Overhead

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.67

April 27, 2021

BUILDING LOCKS

® Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHGS8B
CMPXCHG16B

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.68

April 27, 2021

Slides by Wes J. Lloyd L9.34

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

HISTORICAL IMPLEMENTATION

5 To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts() ;

}

void unlock() {
EnableInterrupts () :

(s IS TS CURN |5 B

}

m Any thread could disable system-wide interrupt
= What if lock is never released?

® On a multiprocessor processor each CPU has its own interrupts

= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= |f not queued...

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

OBJECTIVES - 4/27

Questions from 4/22

C Tutorial - Pointers, Strings, Exec in C
Assignment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section

® Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

® Chapter 28: Locks

= |ntroduction, Lock Granularity

= Spin Locks

Test and Set, Compare and Swap

Chapter 29:

Lock Based Data Structures

= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

Lloyd

4/27/2021

L9.35

TCSS 422 A — Spring 2021
School of Engineering and Technology

SPIN

= “Do-it-yourself”
® |s this lock imp

LOCK IMPLEMENTATION

® Operate without atomic-as a unit assembly instructions

Locks

lementation: (1)Correct? (2)Fair? (3)Performant?

1 typedef struct _ lock t { int flag:; } lock t:
\n\““g”um 2
& a'f
S 3 void init(lock_t *mutex) |
o 4 // 0 2 lock is available, 1 = held
7"':0 5 mutex->flag = 07
'ru..}.’lﬁuw‘ & 1
7
8 void lock(lock t *mutex) {
9 (mutex— >flag == 1) // TEST the flag
10 : // spin-wait (do nothing)
11 mutex->flag = 17 // now SET it !
2]
gl
14 void unlock(lock t *mutex) {
15 mutex->flag = 07
el]

April 27, 2021

TCSS422: Operating Systems [Spring 2021] .71
School of Engineering and Technology, University of Washington - Tacoma :

® Correctness requires luck...

DIY: CORRECT?

(e.g. DIY lock is incorrect)

flag =

Threadl Thread2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1

1; // set flag to 1 (too!)

® Here both threads have “acquired” the lock simultaneously

April 27, 2021

TCSS422: Operating Systems [Spring 2021] 19.72

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

4/27/2021

L9.36

TCSS 422 A — Spring 2021

School of Engineering and Technology

Slides by Wes J.

DIY: PERFORMANT?

{

}

mutex->flag = 1;

void Tock(lock_t *mutex)

// while Tock is unavailable, wait..

® What is wrong with while(<cond>); ?

® Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and evaluates mutex->flag value...
= Generates heat...

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C

® Assighnment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition

= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

Chapter 28: Locks

= |Introduction, Lock Granularity
= Spin Locks, Test and Set,JCompare and Swap

Chapter 29: Lock Based Data Structures

= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.74

Lloyd

4/27/2021

L9.37

TCSS 422 A — Spring 2021

School of Engineering and Technology

TEST-AND-SET INSTRUCTION

® Hardware support required for working locks

® Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

1
2
3
4
5

int TestAndSet (int *ptr, int new) {

int old = *ptr; // fetch ol
*ptr = new;
old;

}

® lock() method checks that TestAndSet doesn’t return 1
® Comparison is in the caller

® Can implement the C version (hon-atomic) and have some
success oh a single-core VM

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

DIY: TEST-AND-SET - 2

bl typedef struct _ lock t {
int flag:
3 } lock_t:
4
5 void init(lock_t *lock) {
[LB g cates that lock is available,
7 // 1 that
8 lock-»>flag = 07
9 }
10
51 void lock(lock_t *lock) {
12 (Testandset (¢lock->flag, 1) == 1)
13 H // spin-wait
14 3}
15
16 void unlock(lock t *lock) {
17 lock->flag = 07
18}

m C version: requires preemptive scheduler onsingle core system
® Lock is never released without a context switch
® single-core VM: occasionally will deadlock, doesn’t miscount

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

Slides by Wes J. Lloyd

4/27/2021

L9.38

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SPIN LOCK EVALUATION

® Correctness:

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)
= Performance is slow when multiple threads share a CPU
Especially if “spinning” for long periods

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma .77

April 27, 2021

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
® Assighnment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set,/Compare and Swap|
Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.78

April 27, 2021

Lloyd

4/27/2021

L9.39

TCSS 422 A — Spring 2021
School of Engineering and Technology

COMPARE AND SWAP

® Checks that the lock variable has the expected value FIRST,
before changing its value
= |If so, make assignment
= Return value at location

® Adds a comparison to TestAndSet

= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

m Useful for wait-free synchronization
= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

a TCSS422: Operating Systems [Spring 2021]
(il 27, 2Pl School of Engineering and Technology, University of Washington - Tacoma L9.79

Slides by Wes J.

COMPARE AND SWAP

® Compare and Swap

al int CompareAndSwap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)
4
5

*ptr = new;
actual;

C implementation 1-core VM:

® Spin loc "
Count is correct, no deadlock

g o

m X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
" cmpxchgléb

. TCSS422: Operating Systems [Spring 2021]
April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma L5.80

Lloyd

4/27/2021

L9.40

TCSS 422 A — Spring 2021

School of Engineering and Technology

Slides by Wes J.

When implementing locks in a high-level language

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable
Condition variables

ATOMIC instructions

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.co

Fairness

.

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

®m Cooperative instructions used together to support
synchronization on RISC systems

B No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

® Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

® Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.82

Lloyd

4/27/2021

L9.41

TCSS 422 A — Spring 2021

School of Engineering and Technology

LL/SC LOCK

1
2

3 }

4

5

6

7

8

9 }
10

11 }
12 &

int LoadLinked (int #*ptr) {

*ptr:

int StoreConditional (int *ptr, int wvalue) {

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;
1; // success!

0; // failed to update

B LL instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 (1) {

3 (LoadLinked (&lock->flag) == 1)
4 ¢ // spin until ‘it's zero
5 (storeConditional (&lock->flag, 1) == 1
[3 CR Y it-to-1 w
7 Exy i

8 }

9 }

10

11 wvoid unlock(lock t *lock) {

12 lock->flag = 07

13

® Two instruction lock

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

Slides by Wes J. Lloyd

4/27/2021

L9.42

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2021]

il 226, 20 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/27

= Questions from 4/22
= C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures |
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.86

Lioyd

4/27/2021

L9.43

TCSS 422 A — Spring 2021

School of Engineering and Technology

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

® Considerations:

=Correctness
= Performance
*Lock granularity

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

L9.87

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t |
2 int value:

3 } counter t;

4

5 void init (counter t *c) {

3 c->value = 0;

7 }

8

9 void increment(counter t *c) {
10 c->value++;

11 H

12

13 void decrement (counter t *c) {
14 c->value--;

15 1

16

15 int get({counter t *c) {

18 return c->value;

19 1

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.88

Slides by Wes J. Lloyd

4/27/2021

L9.44

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENT COUNTER

1 struct counter t |

2 int value;

3 pthread lock t lock;

4 } counter t;

5

6 void init (counter t *c) {

7 c->value = 0;

8 Pthread mutex init (&c->lock, NULL);
9 1

10

i | void increment (counter t *c) {

12 Pthread mutex lock(&c->lock):
13 c->value++;

14 Pthread mutex unlock(&c->lock):
15 }

16

® Add lock to the counter
® Require lock to change data

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.89

® Get value

CONCURRENT COUNTER - 2

® Decrease counter

(Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock):
15 c->value-—;

20 Pthread mutex unlock(&c->lock):
21 }

22

23 int get(counter t *c) {

24 Pthread mutex lock(&c->lock);
25 int rc = c->»value;

26 Pthread mutex unlock(&c—>lock);
27 return rc;

28 }

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.90

Slides by Wes J. Lloyd

4/27/2021

L9.45

TCSS 422 A — Spring 2021
School of Engineering and Technology

154
X Precise
© Sloppy

o
L

o
f

Time (seconds)

2 3 4
Threads

CONCURRENT COUNTERS - PERFORMANCE

® iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

scales poorly

April 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L9.91

® Throughput:

® 1 core

"N =100 tps

® 10 cores
"N =1000 tps

PERFECT SCALING

® Transactions per second (tps)

(x10)
(x10)

m Achieve (N) performance gain with (N) additional resources

April 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

19.92

Slides by Wes J. Lloyd

4/27/2021

L9.46

TCSS 422 A — Spring 2021

School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section
Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap

® Chapter 29: Lock Based Data Structures
| = Sloppy Counter |

= Concurrent Structures: Linked List, Queue, Hash Table

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.93

SLOPPY COUNTER

® Provides single logical shared counter

=" Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead

Large (S): fewer updates, more performant, less synchronized

® Why this implementation?
Why do we want counters local to each CPU Core?

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.94

Slides by Wes J. Lloyd

4/27/2021

L9.47

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SLOPPY COUNTER - MAIN POINTS

® |dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= I[nstead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Sloppy counter: trade-off accuracy for speed
= |t’s sloppy because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L9.95

April 27, 2021

SLOPPY COUNTER - 2

® Update threshold (S) = 5
®m Synchronized across four CPU cores
® Threads update local CPU counters

Time Ly Ly Lg Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 530 1 3 4 5 (from L,)
7 0 2 4 530 10 (from L)

April 27, 2021 ;Er?iilzif gr?;i;ac:(ie':'ignzy:;edm‘lig‘:\:?fgio fJ:rll]iversity of Washington - Tacoma L9.96

Lloyd

4/27/2021

L9.48

TCSS 422 A — Spring 2021

School of Engineering and Technology

THRESHOLD VALUE S

® Consider 4 threads increment a counter 2000000 times each
" Low S > What is the consequence?

® High S > What is the consequence?

15

—_
(=)
|

Time (seconds)

w
L

0 T T T T T T T T i T
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.97

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.98

Slides by Wes J. Lloyd

4/27/2021

L9.49

TCSS 422 A — Spring 2021

School of Engineering and Technology

OBJECTIVES - 4/27

Questions from 4/22

C Tutorial - Pointers, Strings, Exec in C
Assignment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction

= Race condition
= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

Chapter 28: Locks

= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List,|Queue, Hash Table

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.99

CONCURRENT LINKED LIST -1

®m Simplification - only basic list operations shown
® Structs and initialization:

1 // basic node structure

2 typed truct node t {

3 int key;

4 struct _ node t *next:

5 } node_t:

6

5 // basic list structure (one used per list)
g typedef struct 1list t {

9 node t *head;

10 pthread mutex t lock:

11 } list_t:

12

1.3 void List Init(list t *L) {

14 L->head = NULL;

15 pthread mutex init (&L->lock, NULL):
16 }

17

(Cont.)

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.100

Slides by Wes J. Lloyd

4/27/2021

L9.50

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® [nsert - adds item to list
® Everything is critical!
= There are two unlocks

(Cont.)

18 int List_Insert(list_t *L, int key) {

19 pthread mutex lock(&L->lock):

20 node t *new = malloc(sizeof (node t));
21 if (new == NULL) {

22 perror("malloc");

23 pthread mutex unlock(&L->lock);
24 return -1; // fail }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread mutex unlock(&L->lock);

30 return 0; // success

31 1

(Cont.)

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.101

CONCURRENT LINKED LIST - 3

® Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

(Cont.)

32

32 int List Lookup(list t *L, int key) {

33 pthread mutex lock(&L->lock):

34 node t *curr = L->head;

35 while (curr) {

36 if (curr-»key == key) {

37 pthread mutex unlock(&L->1lock)?
38 return 0; // success
39 1

40 curr = curr->next;

41 1

42 pthread mutex unlock(&L->lock)?

43 return -1; // failure

44 1

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.102

Slides by Wes J. Lloyd

4/27/2021

L9.51

TCSS 422 A — Spring 2021
School of Engineering and Technology

prone

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released
Research has shown “exception-based control flow” to be error

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

®m Second Implementation ...

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.103

CCL - SECOND IMPLEMENTATION

® |nit and Insert

@~ o s W N

void List_Init(list_t *L) {

L->head = NULL;
pthread mutex init(&L->lock, NULL);:
}

void List_Insert(list_t *L, int key) {

// synchronization not needed
node t *new = malloc(sizeof (node t)):
if (new == NULL) {
perror ("malloc™) ;
return;
}

new->key = key;

// just lock critical section
pthread _mutex_lock(&L->lock):
new->next = L->head;

L->head = new;

pthread mutex_unlock (&L->lock)

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.104

Slides by Wes J. Lloyd

4/27/2021

L9.52

TCSS 422 A — Spring 2021
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION - 2

= Lookup
(Cont.)
22 int List_Lookup(list_t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L->lock):
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-»key == key) {
28 rv = 0;
29 break;
30 }
il curr = curr->next;
32 }
33 pthread mutex unlock(&L->lock):
34 return rv; // now both success and failure
35 }

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

19.105

CONCURRENT LINKED LIST PERFORMANCE

® Using a single lock for entire list is not very performant

® Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

4/27/2021

L9.53

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/27

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C
= Assighment 1
Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List,/Queue| Hash Table

TCSS422: Operating Systems [Spring 2021]

(Rl 227, 2ATEAL School of Engineering and Technology, University of Washington - Tacoma

19.107

MICHAEL AND SCOTT CONCURRENT QUEUES

® Improvement beyond a single master lock for a queue (FIFO)
® Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

® |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2021]

April 27, 2021 School of Engineering and Technology, University of Washington - Tacoma

19.108

Lloyd

4/27/2021

L9.54

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENT QUEUE

® Remove from queue

[R R

struct _ node t {

int value;

struct _ node_t *next:
} node t:
ty] struct _ queue_t {

node_t *head;

node_t *tail;

pthread mutex t headLock;

pthread mutex t taillLock;
} queue t;

volid Queue Init (queue t *q) {
node t *tmp = malloc(?izecf(nodeft));
tmp->next = NULL;
q->head = g->tail = tmp;
pthread mutex init(sgq->headLock, NULL)}:
pthread mutex init(sgq->taillock, NULL):

(Cont.)

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.109

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21

vold Queue Enqueue(queue t *g, int value) {
node t *tmp = malloc(sizeof (node t));
assert (tmp !'= NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(&g->taillLock);
g->tail->next = tmp;

g->tail = tmp;

pthread mutex unlock(&gq->tailLock);

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.110

Slides by Wes J. Lloyd

4/27/2021

L9.55

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

® Questions
® C Tutorial

OBJECTIVES - 4/27

from 4/22

- Pointers, Strings, Exec in C

= Assighment 1

Quiz 1 - Active Reading Chapter 9
Chapter 26: Concurrency: An Introduction

= Race condition
= Critical section

Chapter 27: Linux Thread API
= pthread_
= pthread_
= pthread_

Chapter 28: Locks

create/_join
mutex_lock/_unlock/_trylock/_timelock
cond_wait/_signal/_broadcast

= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

Chapter 29: Lock Based Data Structures

= Sloppy Counter
= Concurrent Structures: Linked List, Queue,lHash Tablel

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.111

CONCURRENT HASH TABLE

®m Consider a simple hash table
="Fixed (static) size
=Hash maps to a bucket

Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.112

Lloyd

4/27/2021

L9.56

TCSS 422 A — Spring 2021

School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts

= iMac with four-core Intel 2.7 GHz CPU

April 27, 2021

154
O Simple Concurrent List
X Concurrent Hash Table
o
T 10+
o
o
]
€24
@
E 5-
=
0 b F.

il e
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.113

CONCURRENT HASH TABLE

[T I R I S UV S

#define BUCKETS (101)

struct _ hash t {
list_t 1lists[BUCKETS];
} hash t;

void Hash Init(hash t *H) {
int i:
for (i = 0; i < BUCKETS; i++) {
List_Init (&H->1ists[i]);
}
}

int Hash Insert (hash_t *H, int key) {

int bucket = key % BUCKETS;

return List Insert(sH->lists[bucket], key):
}

int Hash Lookup (hash_t *H, int key) {
int bucket = key % BUCKETS;
return List Lookup(sH->lists[bucket], key):

April 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

19.114

Slides by Wes J. Lloyd

4/27/2021

L9.57

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

.'Which is a major advantage of using concurrent data
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

LOCK-FREE DATA STRUCTURES

® | ock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomiclntegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2021 19.116

Lloyd

4/27/2021

L9.58

TCSS 422 A — Spring 2021 4/27/2021
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L9.59

