TCSS 422 A — Spring 2021 4/23/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/22

[= Questions from 4/20]
= Assignment O

= C Tutorial - Pointers, Strings, Exec in C
Proportional Share : = Assignment 1
. = Chapter 9: P ti I Sh Schedul
Schedulers, O \ fp er roportiona are Schedulers
A e = Lottery scheduler
Introduction to Concurrency K L « Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
Wes J. Lloyd = Introduction
School of Engineering and Technology = Race condition
University of Washington - Tacoma Mo eaisection

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ broad t
April 22, 2021 TCSS422: Operating Systems [Spring 2021] TCS$422: Operating Systems [Spring 2021]

R e e e T o ENZZ, 2 e T T T o ey A T = TPy ‘ 182 ‘
TCSS 422 - Online Daily Feedback Survey - 4/1
ONLINE DAILY FEEDBACK SURVEY i
Question 1 05pts.
B L B On ascale of 1 to 10, pl ify your perspecti in today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 a4 5 & 71 8 8 10
= Tuesday surveys: due by ~ Wed @ 11:59p e 1o e o o st
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments
sping 2021
! ! Question 2 05pts
Home
Aniniouriceirierts Please rate the pace of today's class:
T * Upcoming Assignments 1 2 = a4 5 e 7 8 @ 1
Sylbhis < TCSS 422 - Online Daily Feedback Survey - 4/1
: ™ Avalable i Apr 33t 11:5%m | Dus Apr 33t10mm. | -11pis
Dicriiccinne o Y eimsas
TCS5422: Computer Operating Systems [Spring 2021] TCSS422: Computer Operating Systems [Spring 2021]
CEIEBETR ‘ School of Engineeri iversity Tacoma ‘ 83 ‘ (Al P A B R I N T U e T i R L84

MATERIAL / PACE FEEDBACK

. . . . = Do a lot of malicious softwares operate off the creation and execution
= Please classify your perspective on material covered in today’s of batch commands?

class (48 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

2012: Can a .sh file be a virus or something harmful?
https://security, m ions/15585/can-a-sh-file-be-malware
.sh files are shell scripts. They are analogous to .bat files under
= Average - 6.67 (4 - previous 7.07) Windows. All of these scripts are executable programs; if you run one,
it can do anything you can do. So yes, shell scripts can be harmful.
Treat a shell script (or Perl, Python, or Ruby script, etc.) with the same
= Please rate the pace of today’s class: suspicion as any other application.

~ i i v It's a bit harder to hide malware in a shell script without looking
® 1-slow, 5-just right, 10-fast suspicious, because scripts can be read by people with knowledge of
= Average - 5.53 (T - previous 5.48) the scripting language. But it is not much harder.

2020: We have started to notice an increase in the script changes and
quality. Plain text links are replaced by Base64-encoded text, while
some of the code chunks were downloaded or encoded payloads. This
is done to hide direct payload links, evade security rules used for their
identification, and make analysis more difficult.
https://www.trendmicro.com/en_us/research/20/i/the-evolution-of-malici hell-
scripts.html

TCS5422: Computer Operating Systems [Spring 2021] TCSS422: Operating Systems [Spring 2021]
RERlaZi02n Seoolof Engiresrng cndiechnolosyiUnversity q Tacoma 185 LN, 27 Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

‘ 8.6 ‘

Slides by Wes J. Lloyd L8.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/23/2021

BONUS SESSION -

= Approximately ~1 hour

= Will solve a series of example scheduling problems
= Focus on: FIFO, SJF, STCF, RR, MLFQ

= Video will be recorded and posted

EXAMPLE SCHEDULER PROBLEMS

= Bonus session: Tuesday April 27 starting at 6:30pm

TCS5422: Operating Systems [Spring 2021]

RERlaZi202n e o T B s oy Tty A T = TRy

QuiZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas

= Due Friday April 30t at 11:59pm

= Grace period til Sunday May 2"? at 11:59 ** AM **
= Late submissions til Tuesday May 4th at 11:59pm

= Link:

= http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021 quiz_1.pdf

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 188

April 22, 2021

OBJECTIVES - 4/22

= Questions from 4/20
| = Asslgnment 0 |

= C Tutorial - Pointers, Strings, Exec in C

= Assignment 1

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broad

TCS5422: Operating Systems [Spring 2021]
e e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

ASSIGNMENT O

= Due at Thursday April 22 @ 11:59pm
= Grace period: submission ok til Sat April 24 @ 11:59 AM
= Late submissions: ok til Monday April 26 @ 11:59pm

= OFFICE HOURS FRIDAY April 23"
= 1:30 to 2:30pm
= Hours adjusted for this Friday April 23

TCS5422: Operating Systems [Spring 2021]

SrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 18.10

OBJECTIVES - 4/22

= Questions from 4/20
= Assignment O
= C Tutorlal - Polnters, Strings, ExecIn C |

= Assignment 1

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2021]
RERlaZi02n e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

‘ 1811 ‘

OBJECTIVES - 4/22

= Questions from 4/20

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C

| = Assignment 1

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

April 22, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1812

Slides by Wes J. Lloyd

L8.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

. TCSS422: Operating Systems [Spring 2021]
Sunu2zianzd School of Engineering and Technology, University of Washington -

4/23/2021

OBJECTIVES - 4/22

= Questions from 4/20
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
= Chapter 9: Proportional Share Schedulers
| = Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2021]
ENZZ, 2 e BT T o Uy i = e

‘ 18.14

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

April 22,2021 TCS8422; Operating Systems [Spring 2021]) 815
0ol of Technology, y Tacoma

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
=Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2021]
EINZZ, 2 Sehool of Ergineerins endTechnolosyiUn

ity of i Tacoma

‘ 18.16

LOTTERY SCHEDULER IMPLEMENTATION

head

1t counter = 0;

winner = getrandom(0, totaltickets);
9 node_t *current = head;

12 (current) {
counter = counter + current->tickets;
(counter > winner)

current = current->next;

April 22,2021 TCS8422; Operating Systems [Spring 2021]) 817
0ol of Technology, y Tacoma

Slides by Wes J. Lloyd

OBJECTIVES - 4/22

= Questions from 4/20
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
| = Ticket mechanisms |
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2021]
LN, 27 Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

‘ 18.18 ‘

L8.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/23/2021

TICKET MECHANISMS

TICKET MECHANISMS - 2

= Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B’s currency) to B1 > 100(global currency)

TCS5422: Operating Systems [Spring 2021]

April 22, 2021 School of Engineering and Technology, University of Washington - Tacoma

1819

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

TCS5422: Operating Systems [Spring 2021]

ENZZ, 2 o T T T o e A S T = e

‘ 18.20

LOTTERY SCHEDULING

= Scheduler picks a winnlng ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A AB AB A

= But what do we know about probability of a coin flip?

April 22,2021 Tcsz:lzz; Operating Systems [Spring 2021]

chnology, ity i Tacoma

1821 ‘

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

100
80
80
70
60

50

40

" Allheads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

ol

-
Increasing number of coin tosses

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 18.22

April 22, 2021

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

1.0

> &

2

Unfairmess (Average)

10 100 1000
Job Length

April 22, 2021

Tacoma

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
=Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assighment is really an open problem...

TCS5422: Operating Systems [Spring 2021]

RrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1824

Slides by Wes J. Lloyd

L8.4

TCSS 422 A — Spring 2021 4/23/2021
School of Engineering and Technology

OBJECTIVES - 4/22

= Questions from 4/20

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C

= Assignment 1

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms

| = Stride scheduler |

= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2021]
ENZZ, 2 e BT T o Uy i = e

WE WILL RETURN AT

4:53PM

TCSS422: Operating Systems [Spring 2021]

Sunu2zianzd School of Engineering and Technology, University of Washington -

‘ 18.26

STRIDE SCHEDULER STRIDE SCHEDULER - 2
= Addresses statistical probability issues with = Jobs have a “stride” value
Iottery scheduling = A stride value describes the counter pace when the job should

give up the CPU
= Stride value is inverse in proportion to the job’s number of
= Instead of guessing a random number to select a tickets (more tickets = smaller stride)
job, simply count...
= Total system tickets = 10,000
= Job A has 100 tickets > Aqe = 10000/100 = 100 stride
= Job B has 50 tickets > Bg,qe = 10000/50 = 200 stride
= Job C has 250 tickets > Cqqo = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

1827

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma ‘ 18.28

April 22,2021 Tcsz:lz‘z); Operating Systems [Spring 2021]

nology, ity i Tacoma April 22, 2021

STRIDE SCHEDULER - 3 STRIDE SCHEDULER - EXAMPLE

= Basic algorithm: = Stride values
1. Stride scheduler picks job with the lowest pass value =Tickets = priority to select job
2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

4. When counter exceeds pass value of current job, pick a

new job (go to 1) Priority
C stride = 40
= KEY: When the counter reaches a job’s “PASS” value, A stride = 100
the scheduler passes on to the next job... B stride = 200

April 22, 2021 1829 April 22, 2021

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri chnology, University i Tacoma

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma ‘ 1830

Slides by Wes J. Lloyd L8.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Set A’s pass value to A’s stride = 100
= Increment counter until > 100
= Pick a new job: two-way tie

Pass(A) Pass(?) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 (¢
200 200 200

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)

Tickets
C =250
A =100
B = 50

4 initial job selection
is random.All @ 0

« C has the most tickets
and receives a lot of
opportunities to run...

April 22,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1831 ‘

4/23/2021

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(2) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 c
100 200 40 (= « C has the most tickets
100 200 80 € and is selected to run
100 200 120 A more often ...
200 200 120 €
200 200 160 C
200 200 200

TCS5422: Operating Systems [Spring 2021]

ENZZ, 2 o T T T o e A S T = e

‘ 1832 ‘

= Tickets are analogous to job priority

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0
100 200 0 C
100 200 40 [
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next

= Qver time jobs are scheduled to run based on their -
priority represented as their share of tickets... Tickets

C =250
A =100
B = 50

TCS5422: Operating Systems [Spring 2021]

OBJECTIVES - 4/22

= Questions from 4/20

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C

= Assignment 1

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler

|_= Linux Completely Falr Scheduler |

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

geulzzi2023 e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome ‘ 1833 ‘

April 22, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 1834

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= 5% of CPU time spent
in the CPU scheduler!

= Study highlights
importance for
high performance
0S kernels and
CPU schedulers !

= Large Google datacenter study:

“Profiling a Warehouse-scale Computer” (Kanev et al.)
= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel

£ 35
2 30
8 25
Z 20
£ 15 kernel
c 10
g 5 kernel/sched
i
S = o o o o N
g &Iy yxyxxx 0
S 9 5 & A c 5 28 F 3
§FE2EFIRIFSE

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.

2780302

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

= Each scheduling class has a runqueue
= Groups process of same class
= In class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

April 22, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 1835 ‘

TCS5422: Operating Systems [Spring 2021]

RrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1836 ‘

Slides by Wes J.

Lloyd

L8.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)
= How to show scheduling class and priority:

" §class
ps -elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

April 22,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1837 ‘

4/23/2021

COMPLETELY FAIR SCHEDULER - 3

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU
= Kernel parameters that specify CFS behavior:
$ sudo sysct] kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysct] kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysct] kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

April 22, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1838 ‘

COMPLETELY FAIR SCHEDULER - 4

= Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= If system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity_ns
(4ms)
= Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue

Ref: min. ns-sched_latency

April 22,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1839 ‘

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

April 22, 2021 TCS5422: Operating Systems [Spring 2021]

”
School of Engineering and Technology, University of Washington - Tacoma ‘ L840 ‘

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approxexecution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed
processes removed

Nodes represent
sched_entity(s)
indexed by their
virlual runtime

virtual runtime

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Spring 2021]

et 2 School of Engineering and Technology, University of Washington - Tacoma

| wa]

CFS: JOB PRIORITY

= Time slice: Linux “Nice value”
= Nice predates the CFS scheduler

=Top shows nice values .

= Process command (hice & priority)E

ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

April 22, 2021 TCS5422: Operating Systems [Spring 2021]

”
School of Engineering and Technology, University of Washington - Tacoma ‘ 1842 ‘

Slides by Wes J. Lloyd

L8.7

TCSS 422 A — Spring 2021

4/23/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

COMPLETELY FAIR SCHEDULER - 7

u CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

=" struct sched_entity contains vruntime parameter

= More information:

= Man page: “man sched” : Describes Linux scheduling API

= Describes process execution time in nanoseconds = http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
= Value is not pure runtime, is weighted based on job priority
= Perfect scheduler > = https://www.kernel.org/doc/Documentation/scheduler/sched-

achieve equal vruntime for all processes of same priority design-CFS.txt

= Sleeping jobs: upon return reset vruntime to lowest value in = https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
system

= Jobs with frequent short sleep SUFFER !!

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= Key takeaway:

= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
Identifylng the next job to schedule Is really fast!
a2 [G oremine st B R st T | e] April 2, 2021 e sz N | s]

OBJECTIVES - 4/22

= Questions from 4/20
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
| = Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

. TCSS422: Operating Systems [Spring 2021] TC55422: Operating Systems [Spring 2021]
goalizziana School of Engineering and Technology, University of Washington - SrRpl222028 School of Engineeri Technology, University of Washi - Tacoma 1846

= Enables a single process (program) to have multiple “workers”

Process Multithreaded Process * This is parallel programming...
Process State:
e = Supports independent path(s) of execution within a program
Singl with shared memory ...
ing'e ot Sarent Multiple
Threaded e Threaded
AeEss Process = Each thread has its own Thread Control Block (TCB)
s @ v ‘ = PC, registers, SP, and stack
“ BDD = Threads share code segment, memory, and heap are shared
‘©Alfred Park, http:/randu.org/tutorials/threads
= What is an embarrassingly parallel program?
[eimam IS S B owstingonTcoms [uo | R e W I

Slides by Wes J. Lloyd L8.8

TCSS 422 A — Spring 2021

School of Engineering and Technology

= Thread Control Block vs. Process Control Block

PROCESS AND THREAD METADATA

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter Focasizid word
Register contents CAgStET COmtEpEs
y Main memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting
April 22, 2021 TC55422: Operating Systems [Spring 2021]) 1849
00l of chnology, v Tacoma

#include <stdie.h>
tinclude <assert.h»
tinclude <pthread.h>

void smythread(void sarg) (
printf ("
return NUL

ad_t pl, p2;

pthread_create (&p2,
waits for the thr
hread_join(pl, NU
hread_join (p2

s\n", (char «) arg);

mythread,

to

THREAD CREATION EXAMPLE

finish

i assert(rc == 0);

assert (rc == 0);

"A"); assert (rc == 0);
"B"); assert (rc == 0);

printf("main: end\n");
return 0;
April 22,2021 Tcsz:lzz; Operating Systems [Spring 2021]

chnology, ity i Tacoma

‘ 1851 ‘

Starts running
Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1
Waits for T2

Prints ‘main: end’

Runs
Prints ‘A"

Returns

Runs

Prints ‘B

Returns

Returns immediately

POSSIBLE ORDERINGS OF EVENTS - 2

Returns immediately

April 22, 2021 School of

TCS5422: Operating Systems [Spring 2021]

Technology,

Y i Tacoma

‘ 1853 ‘

4/23/2021

SHARED ADDRESS SPACE

= Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code | where imstractons live Program Code
1K The h t 148
e heap segment:
biesp contains mallocd data S Heap
28 dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 15kB
stack (1) arguments to routines, Stack (1)
16K8 return values, etc 16KB

A single-Threaded
Address Space

Two threaded
Address Space

TCS5422: Operating Systems [Spring 2021]

SRgl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1850 ‘

POSSIBLE ORDERINGS OF EVENTS

[mmem | mewss | Tessz |
Starts running
Prints ‘main: begin’
*Crea!es Thread 1
Creates Thread 2
Waits for T1
Runs

‘ Prints ‘A'

Returns

» Waits for T2

Runs
Prints ‘B
Returns

» Prints ‘main: end’

‘ April 22, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1852 ‘

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

events in the program matters?

Slides by Wes J. Lloyd

Waits for T:
Runs
Prints ‘A'
Returns

Waits for T2 Immediately returns

Prints ‘main: end’

; TCS5422: Operating Systems [Spring 2021]
e s v School of Engineering and Technology, University i Tacoma 1854

L8.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/23/2021

COUNTER EXAMPLE

= Counter example

= A + B: ordering

= Counter: incrementing global variable by two threads

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

April 22,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington -

Tacoma

‘ 1855 ‘

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

I s |[wes

regtors | [rogetrs]

Process Process

e o= |
< <
= St threoae
<

singla-throaded procoss

muttithioadad prozoss

April 22, 2021

TCSS422: Operating Systems [Spring 2021] 86
School of Engineering and Technology, University i Tacoma §

OBJECTIVES - 4/22

Questions from 4/20
Assignment O
C Tutorial - Pointers, Strings, Exec in C
Assignment 1
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
|_= Race condition]
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

April 22,2021 TCS8422; Operating Systems [Spring 2021]
of Technology, y

- Tacoma

‘ 1857 ‘

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Threadl Thread2 P eax counter
before critical section 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

save T1's state

restore T2's state 100 o 50
mov 0x804%alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x804%alc 113 51 51
save T2's state
restore T1's state 108 51 50
mov %eax, 0x8049alc 1131 5%

TCS5422: Operating Systems [Spring 2021] ‘ 18.58 ‘

SrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/22

Questions from 4/20
Assignment O
C Tutorial - Pointers, Strings, Exec in C
Assignment 1
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
| = Crltlcal sectlon |
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

April 22,2021 TCS5422; Operating Systems [Spring 2021]
of Technology, y

- Tacoma

‘ 1859 ‘

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomlic executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually excluslve

TCS5422: Operating Systems [Spring 2021]

RrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lbalance = balance + 1;] Critical section

unlock (smutex) i

1

2 P

3 lock (gmntex):
4

5

= Counter example revisited

April 22,2021 Tcsz:fg; Operating Systems [Spring 2021]

" . 18.61
nology, y Tacoma

4/23/2021

CHAPTER 27 -

LINUX
THREAD API

: TCSS422: Operating Systems [Spring 2021]
Geniazi202) School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/22

Questions from 4/20

Assignment O

C Tutorial - Pointers, Strings, Exec in C
Assignment 1

Chapter 9: Proportional Share Schedulers
= Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction

= Race condition
= Critical section

e n a
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2021]
e ‘Schoolo! e antlTechnolce Il AVE ity S = TR

‘ 1863 ‘

THREAD CREATION

= pthread_create

#include <pthread.h>

int

pthread create(pthread_t* thread,
const pthread attr_t* attr,
void* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Spring 2021]
EINZZ, 2 5ehoollof Er pineering andiTech nolosyiUniversity f Tecoma

‘ 1864

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

cypedef struct _ myarg_t {
’ int as
int b;
} myarg_t;
void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
* printf(“sd %d\n”, m->a, m->b);
NULL;
}
int main(int arge, char *argv[]) {
pthread_t p;
int re;
myarg_t args;
* args.a = 10;
args.b = 20;
rc = pthread create(&p, NULL, mythread, &args);:

}

April 22,2021 ‘ Tcsz:fg; Operating Systems [Spring 2021]

" . 18.65
nology, y Tacoma

Slides by Wes J. Lloyd

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

TCTC, M
10 pthread_create (6p, NULL, mythread, 100) ;
11 pthread join(p, (void **) &m);

12 printf (“returned $d\n”, m);

0;

April 22,2021 Tcssnlzz; Operating Systems [Spring 2021]

School o Technology, ity i Tacoma ‘ oo ‘

L8.11

TCSS 422 A — Spring 2021 4/23/2021

School of Engineering and Technology

WAITING FOR THREADS TO FINISH

int pthread_join(pthread t thread, void **value_ptr);

= thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

April 22, 2021 TCS$422: Operating Systems [Spring 2021] ‘ 1867

School of Engineering and Technology, University of Washington - Tacoma

struct myarg {
int a;
int b;
1

What will this code do?

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

zg;ﬁ;:y:rg;onp“’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

int main (int argc, char * argv(]) Segmentation fault (core dumped)
{

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = H
pthread_:
pthread_:
printf("
return 0

How can this code be fixed?

TCSS422: Operating Systems [Spring 2021]

LA 2 School of Engineering and Technology, University of Washington - Tacoma L8.68

struct myarg {
int a;
int b;

How about this code?

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

3 $./pthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a ;

args.b H

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2021]

Qunu2zianzs School of Engineering and Technology, University of Washington - Tacoma L8.69

ADDING CASTS

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-Wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **' but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

TCS5422: Operating Systems [Spring 2021] ‘ 1870

SrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

April 22, 2021

TCS5422: Operating Systems [Spring 2021] 871
0ol of Engineeri Technology, University i Tacoma i

OBJECTIVES - 4/22

= Questions from 4/20
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_tryloc
= pthread cond wait/ signal/ broadcast

elock

TCSS422: Operating Systems [Spring 2021]
‘ LN, 27 Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma 1872

Slides by Wes J. Lloyd

L8.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/23/2021

LOCKS

= pthread_mutex_t data type

= /usr/include/bits/pthread_types.h
// Global Address Space

static volatile int counter = 0;

void *worker(void *arg)

{

int i;
for (i=0;17<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

TCS5422: Operating Systems [Spring 2021]

April 22, 2021 School of Engineering and Technology, University of Washington - Tacoma

| un]

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex_lock (pthread mutex t *mutex);
int pthread mutex_unlock (pthread mutex t *mutex);

= Example w/o initialization & error checking

pthread mutex_t lock;

pthread_mutex_lock (&lock) ;
o et Tl a y
pthread mutex_unlock (&lock) ;

tever your critical section is

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCS5422: Operating Systems [Spring 2021]

ENZZ, 2 o T T T o e A S T = e

‘ 1874 ‘

LOCK INITIALIZATION

= Assigning the constant

[pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;

= API call:

int rc = pthread mutex_init (&lock, NULL
assert (rc == 0);

= |f NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

= |nitializes mutex with attributes specified by 2" argument

TCS5422: Operating Systems [Spring 2021]

April 22, 2021 School of Engineering and Technology, University of Washington - Tacoma

X

= Error checking wrapper

void Pthread mutex lock (pthread mutex t *mutex) {
int rc = pthread mutex_lock (mutex) ;
assert (rc == 0);

}

= What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex_t *mutex);
int pthread mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout);

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TCS5422: Operating Systems [Spring 2021]

SrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1876 ‘

OBJECTIVES - 4/22

Questions from 4/20
Assignment O
C Tutorial - Pointers, Strings, Exec in C
Assignment 1
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join

pring.

Operating S
RERlaZi02n e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

R

CONDITIONS AND SIGNALS

= Condition variables support “signaling” ¥ iy
between threads ¥

int pthread_cond_wait (pthread_cond_t *cond,
pthread mutex_t *mutex);
int pthread cond_signal (pthread_cond_t *cond);

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queues, lock is released
= Waits (lIstens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCS5422: Operating Systems [Spring 2021]

RrRpl222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1878 ‘

Slides by Wes J. Lloyd

L8.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/23/2021

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFQ “walt” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFQ “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_lock()

April 22, 2021

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri i

’ : 1879
nology, y Tacoma

CONDITIONS AND SIGNALS -3

= Wait example:
pthread mutex t lock = PTHREAD MUTEX_INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)

pthread cond_wait(scond, &lock) ;
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

I pthread mutex_lock (&lock) ;

= wait puts thread to sleep, releases lock

= when awoken, lock reacquired (but then released bv this code)
AR 0 State iabl t,
= When initialized, another thread signals Enab?ez\éz:':r tr?r::d(s)

to proceed above.

pthread mutex_lock (slock) ;
initialized = 1;
pthread_cond_signal (sinit);
pthread_mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2021]

School of Technology, University i Tacoma ‘ L8.80 ‘

April 22, 2021

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX_ INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex lock (&lock) ;
hile (initialized

pthread cond wait(&cond, &lock
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 22, 2021

TCS5422: Operating Systems [Spring 2021] 81
0ol of Engineeri Technology, University i Tacoma i

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCS5422: Operating Systems [Spring 2021]

School of Technology, Uni ‘ 1882

April 22, 2021

ity of i Tacoma

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

Tean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable
= clean target

TCSS422: Operating Systems [Spring 2021] 1883
100l of Engineeri i -

April 22, 2021 e g U i Tacoma

QUESTIONS

Slides by Wes J. Lloyd

L8.14

