
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.1Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

MLFQ,
Proportional Share

Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.2

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 20, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

ONLINE DAILY FEEDBACK SURVEY

April 20, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (58 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.07 ( - previous 7.27)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.48 ( - previous 5.52)

April 20, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

MATERIAL / PACE

 What is an example of a “batch job”?
 Refers to "jobs that can run without end user interaction that can be

scheduled to run as resources permit.“
 Run disconnected from any user interface
 Produce output to log files, or submit results to a ddtabase

 Examples:
 Bulk database updates, automated transaction processing, data

processing tasks/workflows:
 Extract, transform, load (ETL) workflow is common in populating data

warehouses, and is inherently a batch process
 Bulk operations on digital images: resizing, conversion,

watermarking, edit ing/fi lter ing
 File conversion from one format to another, conver t propr ietary and

legacy files to standard formats: e.g. CSV, JSON, etc.
 “Batch Processing” on https://en.wikipedia.org/wiki/Batch_processing

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.4Slides by Wes J. Lloyd

 How does the OS decide which queue a job should initially be
in?
 For the MLFQ scheduler, a newly arriving job is always placed into

the HIGH PRIORITY queue, which is the top-most queue

 Is it common practice for programs to be written to do their
best to game systems for selfishly optimized execution t ime?
 This would be highly attractive to developers leveraging cloud

computing platforms

 If a cloud provider (e.g. AWS or Azure) had known scheduling
vulnerabilities, then many users would be interested in gaming the
system

 Similar to cooperative operating systems, we simply can not trust
the program (or programmer) to willingly share resources equitably

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

FEEDBACK - 2

 The priority boost was explained as, "Reset al l jobs to the
topmost queue af ter some time interval S".
How long of an interval is S ?
Can we change it , or adjust the interval?
 The interval “S” is often a multiplier of the scheduler’s time slice
 Time slice is often 10 ms
 A common priority boost interval (S) is 5-10x the time slice

(e.g. 50 to 100ms)
 The priority boost interval change be adjusted
 A dynamic scheduler may try to adapt the priority boost interval
 Dynamic schedulers DO adjust the time slice of a process

 How are users actively being a part of the process of
distributing t ickets in things l ike lottery or stride scheduling?
 Covered in chapter 9…

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.5Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.9

OBJECTIVES – 4/20

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.10

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.6Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.11

OBJECTIVES – 4/20

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.12

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.7Slides by Wes J. Lloyd

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.13

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

MLFQ: TUNING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.8Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

MLFQ RULE SUMMARY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.9Slides by Wes J. Lloyd

 Questions from 4/13

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 7: Scheduling Introduction
 RR scheduler

 Chapter 8: Multi-level Feedback Queue
 MLFQ Scheduler

 Job Starvation

 Gaming the Scheduler

 Examples

 Chapter 9: Proportional Share Schedulers

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

OBJECTIVES – 4/15

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.18

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.10Slides by Wes J. Lloyd

 Question:
 Given a system with a quantum length of 10 ms in its highest

queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
 E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
 n jobs always uses full time quantum (10 ms)
 Batch jobs starts, runs for full quantum of 10ms
 All other jobs run and context switch totaling the quantum per cycle
 If 10ms is 5% of the CPU, when must the priority boost be ???
 ANSWER  Priority boost should occur every 200ms

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

EXAMPLE

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.20

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.11Slides by Wes J. Lloyd

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.21

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.22

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.12Slides by Wes J. Lloyd

 Also called fair-share scheduler
or lottery scheduler

 Guarantees each job receives some percentage of CPU
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

LOTTERY SCHEDULER

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.13Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.26

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.14Slides by Wes J. Lloyd

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

TICKET MECHANISMS - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.15Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of fl ips!

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.16Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

LOTTERY SCHEDULING CHALLENGES

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.17Slides by Wes J. Lloyd

WE WILL RETURN AT
5:10PM

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.33

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.34

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.18Slides by Wes J. Lloyd

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100 stride

 Job B has 50 tickets  Bstride = 10000/50 = 200 stride

 Job C has 250 tickets  Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

STRIDE SCHEDULER - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.19Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

STRIDE SCHEDULER - EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.20Slides by Wes J. Lloyd

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.21Slides by Wes J. Lloyd

 Job counters support determining which job to run next

 Over t ime jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Assignment 1

 Chapter 8: Multi-level Feedback Queue
 Examples

 Chapter 9: Proportional Share Schedulers

 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
April 20, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L7.42

OBJECTIVES – 4/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.22Slides by Wes J. Lloyd

 Large Google datacenter study:
“Profil ing a Warehouse-scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent
in the CPU scheduler!

 Study highlights
importance for
high per formance
OS kernels and
CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue
 Groups process of same class

 In class, scheduler picks task w/ lowest vruntime to run

 Time slice varies based on how many jobs in shared runqueue

 Minimum time slice prevents too many context switches
(e.g. 3 ms)

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.23Slides by Wes J. Lloyd

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
 TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class
ps –elfc

 #priority (nice value)
ps ax -o pid,ni,cls,pri,cmd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long
each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysctl kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysctl kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.24Slides by Wes J. Lloyd

 Sched_min_granularity_ns (3ms)
 Time slice for a process: busy system (w/ full runqueue)

 If system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity_ns
(4ms)

 Scheduling t ime per iod is: total cycle t ime for iterating through a
set of processes where each is allowed to run
(l ike round robin)

 Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue
R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching  less overhead
poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching  more overhead
better near-term fairness

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

CFS TRADEOFF

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.25Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.49

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree
 Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest
vruntime (approx execution time)

 Walking tree to find left
most node has very low
big O complexity:
~O(log N) for N nodes

 Completed
processes removed

 Time slice: Linux “Nice value”

 Nice predates the CFS scheduler

 Top shows nice values

 Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 vruntime is a weighted time measurement

 Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
 Influences job’s position in rb-tree

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

CFS: JOB PRIORITY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.26Slides by Wes J. Lloyd

 CFS tracks cumulative job run time in vruntime variable
 The task on a given runqueue with the lowest vruntime is

scheduled next
 struct sched_entity contains vruntime parameter
 Describes process execution time in nanoseconds
 Value is not pure runtime, is weighted based on job priority

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system
 Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API
 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

COMPLETELY FAIR SCHEDULER - 7

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.27Slides by Wes J. Lloyd

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.53

 Chapter 26: Concurrency: An Introduction
 Introduction

 Race condition

 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join

 pthread_mutex_lock/_unlock/_trylock/_timelock

 pthread_cond_wait/_signal/_broadcast

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

OBJECTIVES

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.28Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.55

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

THREADS - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.29Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

PROCESS AND THREAD METADATA

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.30Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

POSSIBLE ORDERINGS OF EVENTS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.31Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.62

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.32Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplication of code/heap, lightweight execution threads

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.64

PROCESSES VS. THREADS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.33Slides by Wes J. Lloyd

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

RACE CONDITION

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in critical sections
 These sections must be mutually exclusive

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

CRITICAL SECTION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.34Slides by Wes J. Lloyd

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

LOCKS

CHAPTER 27 -
LINUX

THREAD API

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.68

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.35Slides by Wes J. Lloyd

 Chapter 26: Concurrency: An Introduction
 Introduction

 Race condition

 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join

 pthread_mutex_lock/_unlock/_trylock/_timelock

 pthread_cond_wait/_signal/_broadcast

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

OBJECTIVES

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

THREAD CREATION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.36Slides by Wes J. Lloyd

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.72

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.37Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.73

WAITING FOR THREADS TO FINISH

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.74

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.38Slides by Wes J. Lloyd

April 20, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L7.75

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

ADDING CASTS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.39Slides by Wes J. Lloyd

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.77

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.78

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++) {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.40Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.79

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.80

LOCK INITIALIZATION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.41Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.81

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released
 Waits (l istens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.82

CONDITIONS AND SIGNALS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.42Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.83

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.84

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.43Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.85

CONDITION AND SIGNALS - 4

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.86

PTHREADS LIBRARY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.44Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 20, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.87

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.45Slides by Wes J. Lloyd

QUESTIONS

TCSS 422

OFFICE HOURS

PLEASE SAY HELLO

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/20/2021

L7.46Slides by Wes J. Lloyd

OFFICE HOURS

HAVE STEPPED OUT

WILL RETURN
SHORTLY

