TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Intro to Schedulers I,
Proportional Share
Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Gl i, 2Pl School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 4/15

| " Questions from 4/13 |
B Assighment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler
® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
®m Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021

L6.2

Lioyd

4/15/2021

L6.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCS5422 A 5 Assignments

Soring 2021
17 T
Home
Announcernents
Zoom * Upcoming Assignments
]
ke «¢ TCSS422- Online Daily Feedback Survey - 4/1
¥ Available until Apr'S at 11:59pm | Due Apr 5at10pm | /1 pts
Dlicriiccinne Psiw N -~ haelemeniimed sinmesss
a TCSS422: Computer Operating Systems [Spring 2021]
(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma L63
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 6 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
1 2 3 4 5 6 7 8 9 10
slow Just Right Fast
q TCSS422: Computer Operating Systems [Spring 2021]
il e, 20 School of Engineering and Technology, University of Washington - Tacoma L6.4

Lloyd

4/15/2021

L6.2

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (52 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.27 (T - previous 6.91)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.52 ({ - previous 5.65)

TCSS422: Computer Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:5

April 15, 2021

FEEDBACK

= What is the purpose of calculating turnaround time and
response time?

= Calculating these metrics helps us compare different CPU scheduling
algorithms relative to scheduling a specific set of jobs

= The idea is to find the best scheduling algorithm for a set of jobs
= It is hard to find a scheduling algorithm that is good for ALL jobs

® Do programs usually output a sort of "projected time to
completion" to facilitate easier sorting for fairness?
= No, often little information is available to suggest program runtime
= Fairness is frequently evaluated after-the-fact
= The percentage execution time may be given: A=52% B=32% C=16%
= Or we must calculate the % time: A=10m 24s B=6m 24s C=3m 12s

® |s it common practice to break down different measures of
fairness for resource allocation when designing programs?

= No. We calculate fairness to compare operating system algorithms
used to share computing resources (CPU, disk, network)

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Le6

April 15, 2021

Slides by Wes J. Lloyd L6.3

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

FEEDBACK - 2

= What exactly does the fairness number represent?
Best case is 1 and worst case is 1/n.
Does that mean the share of the CPU?

= No, the share of the resource is the X; values we use to calculate the
Jain’s fairness index score.

= Perfect fairness always equals 1. This is when a resource is shared
equally among a set of processes/users

= Low values are always bad. If the number of processes is small, the
value may not be that small

® Jain’s fairness index: the math
= Consider JFI for A=52% B=32% C=16%

(i =)’

J(:rljw2$"'1$n): T

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L67

April 15, 2021

FEEDBACK - 3

m |f SJF (Shortest job first) scheduler is not realistic, why is it
still being used?
= The textbook introduces some “pedagogical schedulers”
FIFO and Round-robin are actually legitimate schedulers

SJF and STCF require knowing how long a job will run in advance and this
information is often not known

= Each successive scheduler introduces new features and capabilities
= We are building towards schedulers full-featured schedulers

Linux, for example, does not predict job runtime, but it does TRACK
cumulative job runtime in making future scheduling decisions

® How would the implementation of a scheduler look? Both at a
higher and lower level.
= Round-robin/FIFO can be simple. Involve a queue and job pointer

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo8

April 15, 2021

Slides by Wes J. Lloyd L6.4

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

FEEDBACK - 2

= What are the advantages of using lower-level APIs such as
open() compared to the specialized versions with
additional features like fopen()? Is this similar to the
control tradeoff? Introducing unnecessary overhead and
the like?
= fopen() and other functions like it are provided largely out of
convenience for developers
= Specialized wrappers such as fopen() abstract additional
functionality to make it more easily accessible for
programmers

®m With the use of standard out and standard error when
EXEC with file redirection, I'm still not sure about the
steps from L4.30

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021

FEEDBACK - 4

= Can we go over trap tables in a little more detail?
Trap #

0 PowerOffTrapHandler()

1 ProtectionFaultHandler()
2 PageFaultHandler()

3 ArithmetricFaultHandler()
4 OSTrapHandler()

= TRAP TABLE:
The x86 processor uses a table known as the interrupt descriptor
table (IDT) to determine how to transfer control when a trap occurs.
The x86 allows up to 256 different interrupt or exception entry
points into the kernel, each with a different interrupt vector.

= TRAP HANDLERS:
Trap handlers are OS kernel functions that are pointed to by the trap
table. These are “event handlers” that respond to various traps.

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

April 15, 2021

Slides by Wes J. Lloyd L6.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

® Questions from 4/13
| = Assignment O |
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler
® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.11

OBJECTIVES - 4/15

® Questions from 4/13
B Assighment O
| = C Tutorial - Pointers, Strings, Exec in C |

® Chapter 7: Scheduling Introduction
= RR scheduler
® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
®m Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.12

Slides by Wes J. Lloyd

4/15/2021

L6.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

® Questions from 4/13
= Assignment O
® C Tutorial - Pointers, Strings, Exec in C

®= Chapter 7: Scheduling Introduction

= RR scheduler |

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

April 15, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L6.13

CHAPTER 7-

SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Spring 2021]

S nulisg202) School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/15/2021

L6.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

RR: ROUND ROBIN

® Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

= Scheduling Quantum Process Burst Time
is called a time slice P1 12

RR is fair, but performs poorly on metrics

such as turnaround time

Round Robin scheduling algorithm

Gantt chart
Scheduling [Pi[P2[P3[Pa[Ps [P1[P2[P4] P |
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 ?&9
Gl i, il gglfgilzif gr:);iLasier:ignzy:;edm‘lf‘eg?::?oggi,ofl%'nliversity of Washington - Tacoma t6.15

RR EXAMPLE

® ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
A B c q
considered
N 0+5+10
o : 10 e 2'0 2'5 3' Taverage response — 3 = 5sec
Time (Second)
SJF (Bad for Response Time]
ABCABCABCABCABC
NIRRT
SRR
= N N N 0+1+2
NE \E NE NS T =— =1sec
T T 1 average response — 3 =
o 5 10 15 20 25 30
Time (Second)
RR with a time-slice of 1sec (Good for Response Time)
TCSS422: Operating Systems [Spring 2021] 16.16

April 15, 2021

School of Engineering and Technology, University of Washington - Tacoma

Lloyd

4/15/2021

L6.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ROUND ROBIN: TRADEOFFS

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

High overhead from Low overhead from
context switching context switching

®Time slice impact:

=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10

= Fairness: round robin is always fair, J=1

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma te.17

April 15, 2021

SCHEDULING WITH I/0

= STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
=B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

® Without considering 1/0:
A B B B

A A A A
CP

B B

U utilization= 100/140=71%
T 1

120

[T T T T
0 20 40 60 80

Time (msec)

T
100 140

Poor Use of Resources

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.18

April 15, 2021

Lloyd

4/15/2021

L6.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SCHEDULING WITH I/0 - 2

® When a job initiates an I/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU

®" When I/0 completes = raise interrupt

= Unblock A, STCF goes back to executing A: (10ms sub-job)
A A B A B A B A B

AR

w

7

. . [Cpu utilization = 100/100=100%

T I T
0 80 100 120

Time (msec)

I T T
0 20 40

o _

Overlap Allows Better Use of Resources

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.19

Which scheduler, thus far, best address fairness

and average response time of jobs?

:l Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin
None of the Above

All of the Above

o U b~ W N

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

4/15/2021

L6.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

QUESTION: SCHEDULING FAIRNESS

®Which scheduler, this far, best addresses fairness
and average response time of jobs?

= First In - First Out (FIFO)

mShortest Job First (SJF)

mShortest Time to Completion First (STCF)
®" Round Robin (RR)

= None of the Above

= All of the Above

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma te.21

April 15, 2021

SCHEDULING METRICS

®m Consider Three jobs (A, B, C) that require:
time,=400ms, timez=100ms, and time;=200ms

® All jobs arrive at time=0 in the sequence of A B C.

B Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

Example:
. A B C |
0 400 500 700

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma t6.22

April 15, 2021

Lloyd

4/15/2021

L6.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

u [J When poll is active, respond at PollEv.com/wesleylloyd641 =
(2 Text WESLEYLLOYD641 to 22333 once to join
What is the Average Response Time of the
FIFO scheduler?
.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..
.l |

CJ When poll is active, respond at PollEv.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

What is the Average Turnaround Time of the
FIFO scheduler?

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

4/15/2021

L6.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SCHEDULING METRICS

® Consider Three jobs (A, B, C) that require:
time,=400ms, timez=100ms, and time;=200ms

® All jobs arrive at time=0 in the sequence of A B C.

B Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

Example:
B c A |
0 100 300 700

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.25

April 15, 2021

“n

CJ When poll is active, respond at PollEv.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

What is the Average Response Time of the
Shortest Job First Scheduler?

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

"

Lloyd

4/15/2021

L6.13

TCSS 422 A — Spring 2021

School of Engineering an

d Technology

“n

[J When poll is active, respond at PollEv.com/wesleylloyd641
(2 Text WESLEYLLOYD641 to 22333 once to join

Shortest Job First Scheduler?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

y

What is the Average Turnaround Time of the

OBJECTIVES - 4/15

® Questions from 4/13
B Assighment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler

= Job Starvation
= Gaming the Scheduler
= Examples
®m Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.28

Slides by Wes J. Lloyd

4/15/2021

L6.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

CHAPTER 8 -
MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Spring 2021]

il i, 20 School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

®Objectives:

=" Improve turnaround time:
Run shorter jobs first

= Minimize response time:
Important for interactive jobs (Ul)

m Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Spring 2021]

. N . . . L6.30
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021

Lioyd

4/15/2021

L6.15

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

Round-Robin
within a Queue

® Multiple job queues

= Adjust job priority based on [High Priority] Q8 —>®—>
observed behavior

Q7
® Interactive Jobs Q6
= Frequent I/0 > keep priority high Q5
= Interactive jobs require fast
response time (GUI/UI) Q4 —)@
® Batch Jobs Q3
= Require long periods of CPU 5
utilization Q
= Keep priority low [Low Priority] Q1 —>®

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma te.31

April 15, 2021

MLFQ: DETERMINING JOB PRIORITY

® New arriving jobs are placed into highest priority queue

= |f a job uses its entire time slice, priority is reduced (])
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

® |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.32

April 15, 2021

Slides by Wes J. Lloyd L6.16

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MLFQ: LONG RUNNING JOB

® Three-queue scheduler, time slice=10ms

J
Priority <

Q1

0 50 100 150 200

Long-running Job Over Time (msec)

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.33

MLFQ: BATCH AND INTERACTIVE JOBS

=A
=B

=200ms,
=100ms

arrival_time =0ms, A
=20ms, B

run_time

run_time arrival_time

Priority Q2

B:

Ql N

QO

o 50 100 150 200

Scheduling multiple jobs (ms)

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.34

Lloyd

4/15/2021

L6.17

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MLFQ: BATCH AND INTERACTIVE - 2

® Continuous interactive job (B) with long running batch job (A)

= Low response time is good for B
= A continues to make progress

‘ The MLFQ approach keeps interactive job(s) at the highest priority

R B R NE IR IR R R
YANERENSYRNYER
Q2 NYINNREYYNRYNYGR A
NARENE AN RNNANN -
NAE NS RRNRNN AN NG
N
\

Q1 B:
o s 10 150 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.35

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

S nulisg202) School of Engineering and Technology, University of Washington -

Lioyd

4/15/2021

L6.18

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

® Questions from 4/13
= Assignment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler

® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler

| = Job Starvation |

= Examples

= Gaming the Scheduler

® Chapter 9: Proportional Share Schedulers

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

[High Priority]

m Starvation

Q8
Q7
Q6
Qs
Q4
Q3
Q2

MLFQ: ISSUES

dOORdOR OO0

[Low Priority] Q1 — > @_, @ CPU bound batch job(s)

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

Slides by Wes J. Lloyd

4/15/2021

L6.19

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/15

® Questions from 4/13
= Assignment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler

® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation

|__=Gaming the Scheduler |

= Examples

® Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.39

MLFQ: ISSUES - 2

B Gaming the scheduler
= [ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

® Job behavioral change
= CPU/batch process becomes an interactive process

[High Priority] Qs _>®_>_>©_, @_,®_,®
7

Q
Q6
Q5
Q4
Q3
Q2
Priority becomes stuck » [Low Pricrity] Q1 —>(G)— (W) CPUbound batch job(s)

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.40

Lloyd

4/15/2021

L6.20

TCSS 422 A — Spring 2021
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE

@ (B

— Starvation

0 50 100 150 200

Without Priority Boost . I B: C:%

® !
®

5=

= Priority Boost

= Reset all jobs to topmost queue after some time interval S

April 15, 2021

TCSS422: Operating Systems [Spring 2021] 6.41
School of Engineering and Technology, University of Washington - Tacoma :

RESPONDING TO BEHAVIOR CHANGE - 2

® With priority boost
= Prevents starvation

@ &1 I
n.A.1
Q1
L
QO
................ m...
0 50 100 150 200

With Priority Boost A:I B: C:%

April 15, 2021

TCSS422: Operating Systems [Spring 2021] 16.42
School of Engineering and Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

4/15/2021

L6.21

TCSS 422 A — Spring 2021
School of Engineering and Technology

® Without priority boost:

KEY TO UNDERSTANDING MLFQ - PB

® Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
® Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

= Job A: 200ms no I/0

STARVATION EXAMPLE

= Consider 3 queues:
® Q2 - HIGH PRIORITY - Time Quantum 10ms

= Q1 - MEDIUM PRIORITY - Time Quantum 20 ms
" QO - LOW PRIORITY - Time Quantum 40 ms

@z LG EL

Without Priority Boost . I B: C:%

= Job B: 5ms then I/0 |
= Job C: 5ms then I/0 Q1
= Q2 fills up, <. Starvation “la @
starves Q1 & QO QO _‘
........ A
= A makes no progress 0 50 100 150 200

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

Slides by Wes J. Lloyd

4/15/2021

L6.22

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

PREVENTING GAMING

® I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

02 -\

Q1

CULLLLLLLLLLLLLL,

100 150 200 0 50 100 150 200

Without(Left) and With(Right) Gaming Tolerance

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.45

April 15, 2021

MLFQ: TUNING

® Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

\

0 50 100 150

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.46

April 15, 2021

Slides by Wes J. Lloyd L6.23

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

PRACTICAL EXAMPLE

® Oracle Solaris MLFQ implementation

= 60 Queues 2
w/ slowly increasing time slice (high to low priority)

= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

®m Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Le.47

April 15, 2021

MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

® Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L.48

April 15, 2021

Lloyd

4/15/2021

L6.24

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

® Questions from 4/13
= Assignment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler
® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler

| = Examples

® Chapter 9: Proportional Share Schedulers

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

round-robin order.

Job Arrival Time

A T=0
B T=0
C T=0

Job Length
4

16

8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

Slides by Wes J. Lloyd

4/15/2021

L6.25

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

EXAMPLE

® Question:

® Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

® Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
= E.g. 2 jobs =5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
= n jobs always uses full time quantum (10 ms)
= Batch jobs starts, runs for full quantum of 10ms
= All other jobs run and context switch totaling the quantum per cycle
= |f 10ms is 5% of the CPU, when must the priority boost be ???
= ANSWER > Priority boost should occur every 200ms

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma t6.51

April 15, 2021

OBJECTIVES - 4/15

® Questions from 4/13
B Assighment O
® C Tutorial - Pointers, Strings, Exec in C

® Chapter 7: Scheduling Introduction
= RR scheduler

® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples

| = Chapter 9: Proportional Share Schedulers |

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.52

April 15, 2021

Slides by Wes J. Lloyd L6.26

TCSS 422 A — Spring 2021
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Spring 2021]

il i, 20 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/15

= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021

L6.54

Slides by Wes J. Lloyd

4/15/2021

L6.27

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

PROPORTIONAL SHARE SCHEDULER

® Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.55

April 15, 2021

LOTTERY SCHEDULER

B Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.56

April 15, 2021

Slides by Wes J. Lloyd L6.28

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

LOTTERY SCHEDULER IMPLEMENTATION

Job:A
Tix:100

Job:C

head Tix250

NULL

1 e’ve found t winner t
2

3

4 a random number generator to
5 get a value 2en 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 loop until the sum of ticket values is > the winner
12 e (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; found the winner

16 current = current->next;

17 }

18 ent the : schedule it...

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.57

TICKET MECHANISMS

® Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
= There are 200 global tickets assigned by the 0OS

User A > 500 (A's currency) to A1 > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B's currency) to BL = 100 (global currency)

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.58

Lloyd

4/15/2021

L6.29

TCSS 422 A — Spring 2021
School of Engineering and Technology

TICKET MECHANISMS - 2

® Ticket transfer
= Temporarily hand off tickets to another process

® Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.59

LOTTERY SCHEDULING

® Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A A B A B A

® But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.60

Slides by Wes J. Lloyd

4/15/2021

L6.30

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COIN FLIPPING

® Equality of distribution (fairness) requires a lot of flips!

100
90
80
70
60
50 1
40

L

All heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Increasing number of coin tosses

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.61

April 15, 2021

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

g e e e
0.8+
064 /

0.4 4

Unfaimess (Average)

0.24

0.0 T T 1
1 10 100 1000

Job Length

When the job length is not very long,

average unfairness can be

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.62

April 15, 2021

Slides by Wes J. Lloyd L6.31

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

LOTTERY SCHEDULING CHALLENGES

® What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

® How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assighment is really an open problem...

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.63

April 15, 2021

STRIDE SCHEDULER

m Addresses statistical probability issues with
lottery scheduling

® |nstead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.64

April 15, 2021

Slides by Wes J. Lloyd L6.32

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A = 10000/100 = 100 stride
= Job B has 50 tickets 2 B4 = 10000/50 = 200 stride
= Job C has 250 tickets > C =10000/250 = 40 stride

stride

stride

® Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.65

April 15, 2021

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.66

April 15, 2021

Lloyd

4/15/2021

L6.33

TCSS 422 A — Spring 2021

School of Engineering and Technology

Slides by Wes J.

STRIDE SCHEDULER - EXAMPLE

= Stride values
="Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

April 15, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)

®m Set A’s pass value to A’s stride = 100

. Tickets
- JICKELS
Increment counter until > 100 C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(2) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A « Initial job selection
100 0 0 B is random. All @ 0
100 200 0 C
100 200 40 € 48 C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
April 15, 2021 ;Er?iilzif gr?;i;ac::e':'ignzy:;edm‘lig‘:\!ggi? fJ:rll]iversity of Washington - Tacoma L6.68

Lloyd

4/15/2021

L6.34

TCSS 422 A — Spring 2021
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 3

® We set A’s counter (pass value) to A’s stride = 100

® Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

® C has the lowest counter for next 3 rounds

Tickets
C =250
A =100
B =50

« C has the most tickets
and is selected to run
more often ...

Pass(A) Pass(2) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 &
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 (&
200 200 200

(Rl 14, 2L ggﬁiﬁfﬁf g’\)geiLa:er:’ignzy:;edm‘lf‘eg?wg?oggi,oﬁﬂiversity of Washington - Tacoma

L6.69

STRIDE SCHEDULER EXAMPLE - 4

® Job counters support determining which job to run next

® OQver time jobs are scheduled to run based on their
priority represented as their share of tickets...

= Tickets are analogous to job priority

Tickets
C =250
A =100
B = 50

Pass(A) Pass(2) Pass(C) Wheo Runs?
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 (e
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 (=
200 200 200
April 15, 2021 ;Er?iilzif gr?;i;ac::e':'ignzy:;edm‘lig‘:\!ggi? fJ:rll]iversity of Washington - Tacoma

L6.70

Slides by Wes J. Lloyd

4/15/2021

L6.35

TCSS 422 A — Spring 2021
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® |Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

® Monitored 20,000 servers over 3 years
® Found 20% of CPU time spent in the Linux kernel
m 5% of CPU time spent

35
in the CPU scheduler! 830
8 25
. . @ 20
® Study highlights E e
0 2 kernel
importance for c 10
high performance $ 0 — kemel/sched
0S kernels and G S oFPXTEREREES
c Q9 ~ = PN~ O a ® S
CPU schedulers ! s ¢ L& EIST T EgS2

Figure 5: Kernel time, especially time spent in the scheduler,

is a significant fraction of WSC cycles.
See: https://dl.acm.org/dol/pdf/10.1145/2749469.2750392

a TCSS422: Operating Systems [Spring 2021]
Gl i, il School of Engineering and Technology, University of Washington - Tacoma

L6.71

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® Loosely based on the stride scheduler

® CFS models system as a Perfect Multi-Tasking System

= |n perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

® Each scheduling class has a runqueue
= Groups process of same class
= |[n class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g. 3 ms)

April 15, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.72

Slides by Wes J. Lloyd

4/15/2021

L6.36

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

®m Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

® How to show scheduling class and priority:
" iclass
ps —elfc

" §priority (nice value)
Ps ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.73

COMPLETELY FAIR SCHEDULER - 3

® Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

® Linux maintains simple counter (vruntime) to track how long
each thread/process has run

® CFS picks process with lowest vruntime to run next

® CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched latency ns
kernel.sched_latency ns = 24000000
$ sudo sysctl kernel.sched min granularity ns
kernel.sched min granularity ns = 3000000
$ sudo sysctl kernel.sched wakeup granularity ns
kernel.sched wakeup granularity ns = 4000000

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021

L6.74

Slides by Wes J. Lloyd L6.37

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 4

" Sched _min_granularity_ ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= |f system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity ns
(4ms)
® Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)

= Example:
sched_latency_ ns (24ms)
if (proc in runqueue < sched latency_ns/sched min_granularity)
or
sched _min_granularity * number of processes in runqueue

TCSS422: Operating Systems [Spring 2021]

(Rl 14, 2L School of Engineering and Technology, University of Washington - Tacoma

L6.75

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching 2> more overhead
better near-term fairness

TCSS422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.76

Slides by Wes J. Lloyd L6.38

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER -5

B Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime

= Leftmost node has lowest
vruntime (approx execution time

® Walking tree to find left
most node has very low
big O complexity:
~0O(log N) for N nodes
= Completed

processes removed [

Virtual runtime

Nodes represent

sched_entity(s)

indexed by their
virtual runtime

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Le77

April 15, 2021

CFS: JOB PRIORITY

static const int prio_to_weight [40] = {
/+ -20 =/ 88761, 71755, 56483, 46273, 36291,

® Time slice: Linux “Nice value” /+ -15 x/ 29154, 23254, 18705, 14949, 11916,
/+ -10 %/ 9548, 7620, 6100, 4904, 3906,
/+ -5 %/ 3121, 2501, 1991, 1586, 1277,

= Nice predates the CFS scheduler /e 0 a7 lo24, 820, 55, 526, 423,
/* 5 % 335, 272, 215, 172, 137
/10 =/ s 01 87, T 56, 45,

= Top shows nice values Yio1s . se, 2e 23, 18, 1s)

i
=" Process command (nice & priority):
Ps ax -o pid,ni,cmd, %$cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.

Influences job’s position in rb-tree

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.78

April 15, 2021

Slides by Wes J. Lloyd L6.39

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

® CFS tracks cumulative job run time in vruntime variable

® The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

® Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.79

April 15, 2021

COMPLETELY FAIR SCHEDULER - 7

® More information:

® Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

® https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

®m See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosysi6-final29.pdf

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.80

April 15, 2021

Slides by Wes J. Lloyd L6.40

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

QUESTIONS

QUESTIONS

Slides by Wes J. Lloyd L6.41

TCSS 422 A — Spring 2021

School of Engineering and Technology

TCSS 422

OFFICE HOURS

PLEASE SAY HELLO

OFFICE HOURS

HAVE STEPPED OUT | - |

WILL RETURN
SHORTLY

Slides by Wes J. Lloyd

4/15/2021

L6.42

