TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/15

= Questlons from 4/13]
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

Intro to Schedulers II,

Proportional Share , :
Schedulers £ = Chapter 7: Scheduling Introduction

= RR scheduler

= Chapter 8: Multi-level Feedback Queue

Wes J. Lloyd = MLFQ Scheduler

School of Engineering and Technology = Job Starvation

University of Washington - Tacoma = Gaming the Scheduler
= Examples

= Chapter 9: Proportional Share Schedulers

. TCSS422: Operating Systems [Spring 2021] TCSS422: Operating Systems [Spring 2021]
Bty P R e e e T o CI e e T T T o ey A T = TPy 162

TCSS 422 - Online Daily Feedback Survey - 4/1
ONLINE DAILY FEEDBACK SURVEY i e
Question 1 05pts.
. N . On a scale of 1 to 10, pl ify your perspectis in today’s
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 a4 5 & 71 8 8 10
= Tuesday surveys: due by ~ Wed @ 11:59p S i e
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments
sping 2021
! ! Question 2 05pts
Home
Ariouricaiats Please rate the pace of today’s class:
Zoom * Upcoming Assignments 1 2 3 4 5 6 7 8 9 10
Sylbhis < TCSS 422 - Online Daily Feedback Survey - 4/1
: ™ Avallable unci Apr 3 2L 11:59pm | Due Apr 52t10pm. | /1 pis
Dicriiccinne o Y eimsas
TCSS422: Computer Operating Systems [Spring 2021] TCSS422: Ce iter O ting Syste S| 2021,
April 15, 2021 ‘ e ote 22 |, ‘ 163 ‘ April 15,2021 School of Encier andt Tochnaloqy, Uy of Washingion - Tacoma 64

MATERIAL / PACE FEEDBACK

= What Is the purpose of calculating turnaround time and

= Please classify your perspective on material covered in today’s response time?
class (52 respondents): = Calculating these metrics helps us compare different CPU scheduling
= 1-mostly review, 5-equal new/review, 10-mostly new algorithms relative to scheduling a specific set of jobs

= The idea is to find the best scheduling algorithm for a set of jobs
= It is hard to find a scheduling algorithm that is good for ALL jobs

= Do programs usually output a sort of "projected time to

= Average - 7.27 (1 - prevlous 6.91)

= Please rate the pace of today’s class: completion” to facilitate easier sorting for fairness?
= 1-slow, 5-just right, 10-fast . Nv:>ly often'little information is available to suggest program runtime
= Average - 5.52 ! - previous 5.65) = Fairness is frequently evaluated after-the-fact

= The percentage execution time may be given: A=52% B=32% C=16%
= Or we must calculate the % time: A=10m 24s B=6m 24s C=3m 12s

= |s it common practice to break down different measures of
fairness for resource allocation when designing programs?
= No. We calculate fairness to compare operating system algorithms
used to share computing resources (CPU, disk, network)

April 15, 2021 TCSSAZZ; Computer Operating Systems [Spring 2021]

TCSS422: Operating Systems [Spring 2021]
School o Technology, y ington -Tacoma ‘ o2 ‘ April 15, 2021 inceri

School of Technology, University of Washington - Tacoma ‘ 166 ‘

Slides by Wes J. Lloyd L6.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

FEEDBACK - 2

= What exactly does the fairness number represent?
Best case is 1 and worst case is 1/n.
Does that mean the share of the CPU?

= No, the share of the resource is the X; values we use to calculate the
Jain’s fairness index score.

= Perfect fairness always equals 1. This is when a resource is shared
equally among a set of processes/users

= Low values are always bad. If the number of processes is small, the
value may not be that small

= Jaln’s falrness Index: the math
= Consider JFI for A=52% B=32% C=16%

T(@1, 82,000 ,3n) =

4/15/2021

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma ‘ e

FEEDBACK - 3

= [f SJF (Shortest job first) scheduler is not reallstic, why Is it
still being used?
= The textbook introduces some “pedagogical schedulers”
FIFO and Round-robin are actually legitimate schedulers

SJF and STCF require knowing how long a job will run in advance and this
information is often not known

= Each successive scheduler introduces new features and capabilities
= We are building towards schedulers full-featured schedulers

Linux, for example, does not predict job runtime, but it does TRACK
cumulative job runtime in making future scheduling decisions

= How would the Implementation of a scheduler look? Both at a
higher and lower level.

= Round-robin/FIFO can be simple. Involve a queue and job pointer

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo

FEEDBACK - 2

= What are the advantages of using lower-level APIs such as

open() compared to the speclalized verslons with

addltlonal features Ilke fopen()? Is this simllar to the

control tradeoff? Introducing unnecessary overhead and

the like?

= fopen() and other functions like it are provided largely out of

convenience for developers

= Specialized wrappers such as fopen() abstract additional
functionality to make it more easily accessible for
programmers

= With the use of standard out and standard error when
EXEC with file redirection, I'm still not sure about the
steps from L4.30

‘ April 15, 2021 ‘ TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ L9

FEEDBACK - 4

= Can we go over trap tables In a little more detall?
Trap #

O I, PoverCffTrapHandierl)
1 |——> ProtectionautHandler(

g

= TRAP TABLE:
The x86 processor uses a table known as the interrupt descriptor
table (IDT) to determine how to transfer control when a trap occurs.
The x86 allows up to 256 different interrupt or exception entry
points into the kernel, each with a different interrupt vector.

= TRAP HANDLERS:
Trap handlers are OS kernel functions that are pointed to by the trap
table. These are “event handlers” that respond to various traps.

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1610

OBJECTIVES - 4/15

= Questions from 4/13
| = Asslgnment 0 |
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler
= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lot

Slides by Wes J. Lloyd

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
| = C Tutorial - Pointers, Strings, Exec in C |

= Chapter 7: Scheduling Introduction
= RR scheduler
= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ o1

L6.2

TCSS 422 A — Spring 2021

4/15/2021
School of Engineering and Technology

OBJECTIVES - 4/15

= Questions from 4/13

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction CHAPTER 7_
| * RR scheduler |

= Chapter 8: Multi-level Feedback Queue

SCHEDULING:
= MLFQ Scheduler INTRODUCTION

= Job Starvation
= Gaming the Scheduler
= Examples

= Chapter 9: Proportional Share Schedulers

April 15, 2021 TCS8422; Operating Systems [Spring 2021])
ool of nology, y - Tacoma

1613

April 15, 2021 TCSS422: Operating Systems [Spring 2021]
2 School of Engineering and Technology, University of Washington -

RR: ROUND ROBIN RR EXAMPLE

= Run each job awhile, then switch to another distributing the

= ABC arrive at time=0, each run for 5 seconds
CPU evenly (fairly)

OVERHEAD not
= Scheduling Quantum \ Process \ Burst Time consldered
is called a time slice [zl 12
= Time a q a 0+5+10
e RR is fair, but performs poorly on metrics 1y 5 Taverage response = —3—— = 58
e such as turnaround time | Time (Second)
! SIF (Bad for Response Time)
period. 1
Round Robin scheduling algorithm ABCABCERECARCARE
Gantt chart
r 0+1+2
= = 1sec
Scheduling » [PL[P2[P3]P4[P5|PL[P2)P4a] P1] o 5 1 15 2 35 % averageresponse 3
= Time (Second)
Quantum § seconds . 3 19 i 19 24 231 52 87 3[}9 RR with a time-slice of 1sec (Good for Response Time)
April 15, 2021 ‘Tcsigfg;°P?““"55Vs‘“ms [SZSE;,UH! %) Tacoma 1615 April 15,2021 Iﬁi‘;fﬁ°"°.’“‘i“?5"“e"}:£f|‘r‘"::fg€7zl1}i ity of Washi Tacoma 1616 ‘

ROUND ROBIN: TRADEOFFS SCHEDULING WITH I/0
Short Time Slice Long Time Slice ® STCF scheduler
=A: CPU=50ms, I/0=40ms, 10ms intervals
Fast Response Time Slow Response Time = B: CPU=50ms, |/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)
High overhead from Low overhead from
context switching context switching = Without considering 1/0:

B

A A A A A B B B B
=Time slice impact:
p_ . CPU utilization=100/140=71%
=Turnaround time (for earlier example):
0 20 4'0 6'0 T s 1!')0 1;0 :

ts(1,2,3,4,5)=14,14,13,14,10)
=Fairness: round robin is always fair, J=1 g

Poor Use of Resources

140

1617

April 15, 2021 TCS8422; Operating Systems [Spring 2021])
0ol of chnology, y Tacoma

April 15, 2021

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma te.18

Slides by Wes J. Lloyd L6.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/15/2021

SCHEDULING WITH I/0 - 2

= When a job initiates an 1/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU
= When I/0 completes - raise interrupt
= Unblock A, STCF goes back to executing A: (10ms sub-job)
A B AB A B AB A B

R
‘ Cpu utilization = 100/100=100%

T T T T T
40 60 80 100 120

Time (msec)

°
n
3

Overlap Allows Better Use of Resources

1619

April 15, 2021 ‘ TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

Which scheduler, thus far, best address fairness

and average response time of jobs?

|:—| Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin

None of the Above

o U~ W N

All of the Above

QUESTION: SCHEDULING FAIRNESS

= Which scheduler, this far, best addresses fairness
and average response time of jobs?

= First In - First Out (FIFO)

=Shortest Job First (SJF)

mShortest Time to Completion First (STCF)
= Round Robin (RR)

= None of the Above

= All of the Above

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma te21

April 15, 2021

SCHEDULING METRICS

= Consider Three jobs (A, B, C) that require:
time,=400ms, time;=100ms, and time,=200ms

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.
Example:
0 400 500 700

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma te.22

April 15, 2021

. J When poll is active, respond at PollEv.com/wesleylloyd641 ..
51 Text WESLEYLLOYD641 to 22333 once to join
What is the Average Response Time of the
FIFO scheduler?
u |
]

L3 When poll is active, respond at PollEv.com/wesleylloyd641 L)

=1 Text WESLEYLLOYD641 to 22333 once to join

What is the Average Turnaround Time of the
FIFO scheduler?

Slides by Wes J. Lloyd

L6.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

SCHEDULING METRICS

= Consider Three jobs (A, B, C) that require:
time,=400ms, timez=100ms, and time,=200ms

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the

average response time (ART) and

SJF scheduler.

Example:
B C .
0 100 300 700

average turnaround time (ATT) scheduling metrics for the

4/15/2021

April 15, 2021 ‘ Tcsz:lz‘z); Operating Systems [Spring 2021]

nology, y ington - Tacoma

1625

.. L3 When poll is active, respond at PollEv.com/wesleylloyd641
£ Text WESLEYLLOYD641 to 22333 once to join
What is the Average Response Time of the
Shortest Job First Scheduler?
-I

&1 Text WESLEYLLOYD641 to 22333 once to join

Shortest Job First Scheduler?

CJ When poll is active, respond at PollEv.com/wesleylloyd641

What is the Average Turnaround Time of the

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler
= Chapter 8: Multl-level Feedback Queue
| = MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

April 15, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, y ington - Tacoma L6.28

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

: TCSS422: Operating Systems [Spring 2021]
i) e School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

April 15, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma L6.30

L6.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

Round-Robin
within a Queue

4/15/2021

MLFQ: DETERMINING JOB PRIORITY

= Multiple job queues

[High Priority] Q8 —> @ —

= Adjust job priority based on
observed behavior

Q7
= [nteractive Jobs Q6
= Frequent 1/0 > keep priority high Qs

= Interactive jobs require fast
response time (GUI/UI)

= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] QL — > @

April 15, 2021

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri inology, University i Tacoma

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (|)
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0O priority stays the same

MLFQ approximates SJF

April 15, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

1632

MLFQ: LONG RUNNING JOB

MLFQ: BATCH AND INTERACTIVE JOBS

= Three-queue scheduler, time slice=10ms

- 2
Priority Q
Q1
QO
0 50 100 150 200
Long-running Job Over Time (msec)
April 15, 2021 TCSS422: Operating Systems [Spring 2021] 1633
pril 15, 100l of Engineeri inology, University i Tacoma §

=A
=B

=200ms,
=100ms

arrival_time =OMS, A
=20ms, B

run_time

run_time arrival_time
Priority

N
i\

150

Scheduling multiple jobs (ms)

April 15, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

1634

MLFQ: BATCH AND INTERACTIVE - 2

= Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

N
B.

Q1
o s 100 150 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

April 15, 2021

TCSS422: Operating Systems [Spring 2021] 1635
100l of Engineeri i -

hnology, ity i Tacoma

Slides by Wes J. Lloyd

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

Al T A School of Engineering and Technology, University of Washington -

L6.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler
= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
| = Job Starvation |
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

4/15/2021

TCS5422: Operating Systems [Spring 2021]

oty P e o T B s oy Tty A T = TRy

1637

MLFQ: ISSUES

= Starvation
[High Priority] Q8 —> @ _, _,@_, @_, ®_,®
Q7
Q6
Qs
o2
@3
Q

[Low Priority] Ql —— ®_> @

CPU bound batch job(s)

TCS5422: Operating Systems [Spring 2021]

CI e o T T T o e A S T = e

1638

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler
= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
| = GamlIng the Scheduler |
= Examples
= Chapter 9: Proportional Share Schedulers

TCS5422: Operating Systems [Spring 2021]

‘ oty P e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

1639

MLFQ: ISSUES - 2

= Gaming the scheduler
= |ssue |/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process

high Preri] @8 — () — (3} —(0)— ()= (£} —(F)
Q7
o
Qs
Q4
®
@
Priority becomes stuck g toweierinl @1 — (@) (i) cPusanastcnsonty

TCS5422: Operating Systems [Spring 2021]

RRalL 2028 School of Engineering and Technology, University of Washington - Tacoma

16.40

@ TR

Q1

Starvation
0 50 100 150 200

= Priority Boost

Without Priority Boost A:I B: C:E

RESPONDING TO BEHAVIOR CHANGE

B‘ié

= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Spring 2021]

et ok it School of Engineering and Technology, University of Washington - Tacoma

16.41

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

Boost

100 150 200

With priority Boost A] BN <

TCS5422: Operating Systems [Spring 2021]

RRalL 202 School of Engineering and Technology, University of Washington - Tacoma

16.42

Slides by Wes J. Lloyd

L6.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

KEY TO UNDERSTANDING MLFQ - PB

= Without priority boost:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

4/15/2021

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L43

STARVATION EXAMPLE

= Consider 3 queues:
® Q2 - HIGH PRIORITY - Time Quantum 10ms

= Q1 - MEDIUM PRIORITY - Time Quantum 20 ms

= Q0 - LOW PRIORITY - Time Quantum 40 ms

= Job A: 200ms no 1/0 0 %@;ggﬂgﬂaﬂgﬂgﬁgﬂgﬁg
= Job B: 5ms then I/0 [

= Job C: 5ms then I/0 Q

= Q2 fills up,
starves Q1 & QO Qo

= A makes no progress
Without Priority Boost A I B: § c;%
NN

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 15, 2021 16.44

PREVENTING GAMING

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

PO L

Without(Left) and With(Right) Gaming Tolerance

TCS5422: Operating Systems [Spring 2021]
oty P ‘ e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

1645

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?

= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?
N

Q2

QL

Q

s e .

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

April 15, 2021 TCS5422: Operating Systems [Spring 2021

”
School of Engineering and Technology, University of Washington - Tacoma Lo

PRACTICAL EXAMPLE

MLFQ RULE SUMMARY

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

TCS5422: Operating Systems [Spring 2021]
el 2r2n Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

1647

= The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

”
School of Engineering and Technology, University of Washington - Tacoma Lo48

Slides by Wes J. Lloyd

L6.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler

| = Examples |
= Chapter 9: Proportional Share Schedulers

4/15/2021

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

HIGH |
|
|

MED |
|
|

Low

April 15, 2021 TCSS422: Operating Systems [Spring 2021] L6.49
pril 15, 100l of Engineeri inology, University i - Tacoma g
= Question:

= Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

= Some combination of n short jobs runs for a total of 10 ms per

cycle without relinquishing the CPU

= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

= n jobs always uses full time quantum (10 ms)

= Batch jobs starts, runs for full quantum of 10ms

= All other jobs run and context switch totaling the quantum per cycle
= If 10ms is 5% of the CPU, when must the priority boost be ???

= ANSWER - Priority boost should occur every 200ms

April 15, 2021 TCS8422; Operating Systems [Spring 2021])
0ol of nology, y - Tacoma

‘ 1651 ‘

OBJECTIVES - 4/15

= Questions from 4/13
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Chapter 7: Scheduling Introduction
= RR scheduler

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples

| = Chapter 9: Proportlonal Share Schedulers |

TCSS422: Operating Systems [Spring 2021]
‘ EI e Sehoolof Ergineerins andTechnokoeyjUnvest i = TP

1652 ‘

CHAPTER 9 -

PROPORTIONAL SHARE
SCHEDULER

. TCSS422: Operating Systems [Spring 2021]
i) e School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

OBJECTIVES - 4/15

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Spring 2021]
G Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

1654 ‘

L6.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCS5422: Operating Systems [Spring 2021]
oty P AT o T B i oy ATt A T T 1655

4/15/2021

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCS5422: Operating Systems [Spring 2021]
CI e o T T T o e A S T = e

1656 ‘

LOTTERY SCHEDULER IMPLEMENTATION

head
1
2 counter = 0;
3
‘
s winner - getrandom(0, totaltickets);
8
. node.t *current = head;
10
1
12 (current) {
13 counter = counter + current->tickets;
14 (counter > winner)
15
16 current - current->next:
17 }
1
TCS5422: Operating Systems [Spring 2021]
oty P e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome 1657

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to AL > 50 (global currency)
> 500 (A's currency) to A2 2> 50 (global currency)

User B > I10(B's currency) to B1 - 100 (global currency)

TCS5422: Operating Systems [Spring 2021]
EI e ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

1658 ‘

TICKET MECHANISMS - 2

LOTTERY SCHEDULING

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

TCS5422: Operating Systems [Spring 2021]

Qi 2023 Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms ‘ 1659 ‘

Slides by Wes J. Lloyd

= Scheduler picks a winnlng ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A AAB ABA

= But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Spring 2021]
G I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

16,60 ‘

L6.10

TCSS 422 A — Spring 2021 4/15/2021
School of Engineering and Technology

COIN FLIPPING LOTTERY FAIRNESS
= Equality of distribution (fairness) requires a lot of flips! = With two jobs
100 = Each with the same number of tickets (t=100)
%0 ™ Allheads 'u z

Unfaimess (Average)

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness. 00
. r : 5 1 10J°bm“g' hn)u 1000
0
increasing number of coin tosses When the job length is not very lol
average unfairness can be

TCS5422: Operating Systems [Spring 2021]
oty P ‘ AT o T B i oy ATt A T T

Op ystems [Spring 2021]
1661 ‘ April 15, 2021 g and Technology, Uni

LOTTERY SCHEDULING CHALLENGES STRIDE SCHEDULER

= What is the best approach to assign tickets to jobs? = Addresses statistical probability issues with
= Typical approach is to assume users know best lottery scheduling
= Users are provided with tickets, which they allocate as
desired

= Instead of guessing a random number to select a
job, simply count...

= How should the OS automatically distribute tickets upon o ply

job arrival?

= What do we know about incoming jobs a priori ?

= Ticket assignment is really an open problem...

April 15, 2021 Tcsz:lzz; Operating Systems [Spring 2021] 1663

chnology, ity i Tacoma

TCS5422: Operating Systems [Spring 2021]
EI e ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

1664

STRIDE SCHEDULER - 2 STRIDE SCHEDULER - 3
= Jobs have a “stride” value = Basic algorithm:
= A stride value describes the counter pace when the job should 1. Stride scheduler picks job with the lowest pass value

give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter
= Total system tickets = 10,000 4. Whep counter exceeds pass value of current job, pick a
. i new job (go to 1)
= Job A has 100 tickets > Ag,iqe = 10000/100 = 100 stride
= Job B has 50 tickets 2> By, = 10000/50 = 200 stride .
= Job C has 250 tickets > Ceige = 10000/250 = 40 stride = KEY: When the counter reaches a jOb s “PASS value,
the scheduler passes on to the next job...
= Stride scheduler tracks “pass” values for each job (A, B, C)

April 15, 2021 Tcsz:lzcz‘; Operating Systems [Spring 2021]

chnology, ity i Tacoma 1665

TCSS422: Operating Systems [Spring 2021]
G I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

1666

Slides by Wes J. Lloyd L6.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

STRIDE SCHEDULER - EXAMPLE

uStride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priorit

Priority
C stride = 40
A stride = 100
B stride = 200

TCS5422: Operating Systems [Spring 2021]

April 15, 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ 1667 ‘

4/15/2021

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

Tickets
= Increment counter until > 100 P
i i . C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(") Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 o A 4 Initial job selection
100 0 0 is random. All @ 0
100 200 0 G
100 200 40 C « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 G
200 200 200
TCS5422: Of iting Syste [Spring 2021]
CTTIESER o T Ty N 5 e e e 1668 ‘

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)

School of Engineering and Technology, University of Washington - Tacoma

.
Randomly choose B Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(E) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 (e
100 200 40 C « C has the most tickets
100 200 80 € and is selected to run
100 200 120 A more often ...
200 200 120 €
200 200 160 [
200 200 200
April 15, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 16.69 ‘

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next

= Qver time jobs are scheduled to run based on their -
priority represented as their share of tickets... Tickets

= Tickets are analogous to job priority 2 = igg
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 c
100 200 40 [
100 200 80 €
100 200 120 A
200 200 120 €
200 200 160 C
200 200 200
TCS5422: Of ting Systs [Spring 2021]
QrDEdEn School of Engineening an Technology, University of Washington -Tacoma 1670 ‘

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Large Google datacenter study:

“Profiling a Warehouse-scale Computer” (Kanev et al.)
= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel

= 5% of CPU time spent ¥,
in the CPU scheduler! 330
8 25|
= Study highlight £29
udy highlights g15 kemel
importance for € 10
high performance g9 kemel/sched
0S kernels and S xSy s
c o & & A & 3 S a § >
CPU schedulers ! § P L IESISTITESE

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.

See: nttpa//al 2780302

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma ‘ te71 ‘

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

= Each scheduling class has a runqueue
= Groups process of same class
= In class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

TCSS422: Operating Systems [Spring 2021]
G I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

1672 ‘

Slides by Wes J. Lloyd

L6.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
= fclass
ps -elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma ‘ te73 ‘

4/15/2021

COMPLETELY FAIR SCHEDULER - 3

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

® Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU
= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched_latency_ ns
kernel.sched latency ns = 24000000
$ sudo sysctl kernel.sched min_granularity ns
kernel.sched min granularity ns = 3000000
$ sudo sysctl kernel.sched wakeup granularity ns
kernel.sched wakeup granularity ns = 4000000

TCS5422: Operating Systems [Spring 2021]
CI e e T T T o ey A T = TPy

1674 ‘

COMPLETELY FAIR SCHEDULER - 4

" Sched_min_granularity_ns (3ms)

= Time slice for a process: busy system (w/ full runqueue)

= If system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity_ns
(4ms)

Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched _min_granularity * number of processes in runqueue

Ref: min. ns-sched_latency

April 15, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma ‘ 75 ‘

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

TCS5422: Operating Systems [Spring 2021]
EI e Sehoollof Erineering andTech nolosyiUnersity oWashinatonkTeconta

1676 ‘

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approxexecution time)
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed
processes removed

Nodes represent
sched_entity(s)
indexed by their
virlual runtime

virtual runtime

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Spring 2021]

et ok it School of Engineering and Technology, University of Washington - Tacoma

CFS: JOB PRIORITY

= Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
=Top shows nice values .
= Process command (hice & priority)E
ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCS5422: Operating Systems [Spring 2021]

RRalL 202 School of Engineering and Technology, University of Washington - Tacoma

1678 ‘

Slides by Wes J. Lloyd

L6.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

= CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

= Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
Identifylng the next job to schedule Is really fast!

4/15/2021

TCS5422: Operating Systems [Spring 2021]

oty P ‘ i ey, 5 f T

1679

COMPLETELY FAIR SCHEDULER - 7

= More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

April 15, 2021 n:sazz; Operating Systems [Spring 2021]

School o Technology, ity ington - Tacoma

16.80

QUESTIONS

QUESTIONS I

TCSS 422

OFFICE HOURS

PLEASE SAY HELLO

Slides by Wes J. Lloyd

OFFICE HOURS
HAVE STEPPED OUT |
=

WILL RETURN } -
SHORTLY

L6.14

