
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.1Slides by Wes J. Lloyd

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Limited Direct Execution II,
Intro to Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 13, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

ONLINE DAILY FEEDBACK SURVEY

April 13, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (56 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.91 (no change - previous 6.91)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.65 ( - previous 5.67)

April 13, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

MATERIAL / PACE

 Could you fork another child process from a child process
to have a grandparent/grandchild process?
 YES

 Can the exec() function be thought of as opening another
thread to a different program?
 NO, exec runs another program in the existing process
 Control is transferred to another executable and is not returned

 Does exec transfer control back to the main program that
called external program?
 No, the PID is transferred to the new executable and does not

come back. If you want to preserve the original program the
idea is to fork and run exec with a child process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.4Slides by Wes J. Lloyd

 What are the advantages of using lower-level APIs such as
open() compared to the specialized versions with
additional features like fopen()? Is this similar to the
control tradeoff? Introducing unnecessary overhead and
the like?
 fopen() and other functions like it are provided largely out of

convenience for developers
 Specialized wrappers such as fopen() abstract additional

functionality to make it more easily accessible for
programmers

 With the use of standard out and standard error when
EXEC with f i le redirection, I 'm still not sure about the
steps from L4.30

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

FEEDBACK - 2

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.5Slides by Wes J. Lloyd

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.9

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.6Slides by Wes J. Lloyd

 Do system calls and traps execute with l imited direct
execution?
 These are privileged operations that are executed in the kernel,

with direct execution.

 In layman operating systems like Windows and iOS, what
processes are already trusted? How difficult is it to make
other processes trusted for the purposes of LDE?“
 User processes by default are not trusted

 They run with Limited Direct Execution

 Only operating system kernel code is trusted
 In Linux this can be the kernel itself of kernel modules

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

FEEDBACK - 3

 What is kernel? Is i t the same thing as OS?
 Yes, the kernel in the binary executable that runs with the computer

boots

 In Linux this is the “/boot/vmlinuz” executable

 Identify file properties of your kernel with the command:

sudo file /boot/vmlinuz-$(uname –r)

 Can you please explain the dif ferences between the kernel,
hardware, and the program?

 The Linux kernel is the binary fi le /boot/vmlinuz… that is
largely written in C & Assembly that implements the Linux OS

 The hardware is the laptop, desktop, or vir tual machine

 The program is a user program that you write such as the
examples we’ve reviewed in class (i .e. fork.c)

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

FEEDBACK - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.7Slides by Wes J. Lloyd

 What are trap tables and trap handlers?“
 TRAP TABLE:

The x86 processor uses a table known as the interrupt descriptor
table (IDT) to determine how to transfer control when a trap occurs.
The x86 allows up to 256 different interrupt or exception entry
points into the kernel, each with a different interrupt vector.

 TRAP HANDLERS:
Trap handlers are OS kernel functions that are pointed to by the trap
table. These are “event handlers” that respond to various traps.

 What is the difference between system APIs and system calls?
Are Fork(), wait(), exec() both system APIs and system calls?
 A system call is the action of actually calling the system API

 A system API is the function as defined in the OS

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

FEEDBACK - 5

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.8Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

OBJECTIVES – 4/13

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.9Slides by Wes J. Lloyd

CH. 6:
LIMITED DIRECT

EXECUTION

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.17

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

MULTITASKING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.10Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.11Slides by Wes J. Lloyd

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

MULTITASKING - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.12Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.24

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.13Slides by Wes J. Lloyd

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.25

QUESTION: TIME SLICE

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.26

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.14Slides by Wes J. Lloyd

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.28

CONTEXT SWITCH - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.15Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.29

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.30

Context Switch

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.16Slides by Wes J. Lloyd

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.32

PREEMPTIVE KERNEL

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.17Slides by Wes J. Lloyd

WE WILL RETURN AT
5:10PM

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.33

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.18Slides by Wes J. Lloyd

CHAPTER 7-
SCHEDULING:

INTRODUCTION

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.35

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time
 The time at which the job completes minus the time at which

the job arrived in the system

 How is turnaround time different than execution time?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.19Slides by Wes J. Lloyd

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.37

SCHEDULING METRICS - 2

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.38

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.20Slides by Wes J. Lloyd

 FIFO: first in, first out

 Very simple, easy to implement

 Consider

 3 x 10sec jobs, arrival: A B C, duration 10 sec each

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.21Slides by Wes J. Lloyd

 Given that we know execution times in advance:

 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C, duration a=100 sec, b/c=10sec

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time: duration a=100s, b/c=10s

 A @ t=0sec, B @ t=10sec, C @ t=10sec

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.42

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.22Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

OBJECTIVES – 4/13

 Consider: duration a=100sec, b/c=10sec

 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.44

SCTF:
SHORTEST TIME TO COMPLETION FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.23Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

OBJECTIVES – 4/13

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO

 can perform poorly with respect to response time

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.24Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

OBJECTIVES – 4/13

 Run each job awhile, then switch to another distr ibuting the
CPU evenly (fairly)

 Scheduling Quantum
is called a t ime slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.25Slides by Wes J. Lloyd

 ABC arrive at time=0, each run for 5 seconds

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.49

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.26Slides by Wes J. Lloyd

 STCF scheduler

 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.51

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.52

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.27Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.53

Which scheduler, this far, best addresses fairness
and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

QUESTION: SCHEDULING FAIRNESS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.28Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

SCHEDULING METRICS

A B C
0 400 500 700

Example:

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.56

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.29Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.57

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

SCHEDULING METRICS

AB C
0 100 300 700

Example:

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.30Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.59

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.60

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.31Slides by Wes J. Lloyd

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.61

 Chapter 8: Multi-level Feedback Queue
 MLFQ Scheduler

 Job Starvation

 Gaming the Scheduler

 Examples

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.62

OBJECTIVES

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.32Slides by Wes J. Lloyd

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.63

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.64

MLFQ - 2 Round-Robin
within a Queue

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.33Slides by Wes J. Lloyd

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.65

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.66

MLFQ: LONG RUNNING JOB

Priority

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.34Slides by Wes J. Lloyd

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.67

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)
 Low response time is good for B

 A continues to make progress

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.68

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.35Slides by Wes J. Lloyd

Starvation

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.69

MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.70

MLFQ: ISSUES - 2

Priority becomes stuck

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.36Slides by Wes J. Lloyd

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.71

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

 Prevents starvation

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.72

RESPONDING TO BEHAVIOR CHANGE - 2

With

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.37Slides by Wes J. Lloyd

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.73

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fil ls up,
starves Q1 & Q0

 A makes no progress

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.74

STARVATION EXAMPLE

Starvation

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.38Slides by Wes J. Lloyd

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

MLFQ: TUNING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.39Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

MLFQ RULE SUMMARY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.40Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.79

 Question:
 Given a system with a quantum length of 10 ms in its highest

queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
 E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
 n jobs always uses full time quantum (10 ms)
 Batch jobs starts, runs for full quantum of 10ms
 All other jobs run and context switch totaling the quantum per cycle
 If 10ms is 5% of the CPU, when must the priority boost be ???
 ANSWER  Priority boost should occur every 200ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.80

EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.41Slides by Wes J. Lloyd

QUESTIONS

