
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.1Slides by Wes J. Lloyd

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Limited Direct Execution II,
Intro to Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 13, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

ONLINE DAILY FEEDBACK SURVEY

April 13, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (56 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.91 (no change - previous 6.91)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.65 (- previous 5.67)

April 13, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

MATERIAL / PACE

 Could you fork another child process from a child process
to have a grandparent/grandchild process?
 YES

 Can the exec() function be thought of as opening another
thread to a different program?
 NO, exec runs another program in the existing process
 Control is transferred to another executable and is not returned

 Does exec transfer control back to the main program that
called external program?
 No, the PID is transferred to the new executable and does not

come back. If you want to preserve the original program the
idea is to fork and run exec with a child process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.4Slides by Wes J. Lloyd

 What are the advantages of using lower-level APIs such as
open() compared to the specialized versions with
additional features like fopen()? Is this similar to the
control tradeoff? Introducing unnecessary overhead and
the like?
 fopen() and other functions like it are provided largely out of

convenience for developers
 Specialized wrappers such as fopen() abstract additional

functionality to make it more easily accessible for
programmers

 With the use of standard out and standard error when
EXEC with f i le redirection, I 'm still not sure about the
steps from L4.30

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

FEEDBACK - 2

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.5Slides by Wes J. Lloyd

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.9

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.6Slides by Wes J. Lloyd

 Do system calls and traps execute with l imited direct
execution?
 These are privileged operations that are executed in the kernel,

with direct execution.

 In layman operating systems like Windows and iOS, what
processes are already trusted? How difficult is it to make
other processes trusted for the purposes of LDE?“
 User processes by default are not trusted

 They run with Limited Direct Execution

 Only operating system kernel code is trusted
 In Linux this can be the kernel itself of kernel modules

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

FEEDBACK - 3

 What is kernel? Is i t the same thing as OS?
 Yes, the kernel in the binary executable that runs with the computer

boots

 In Linux this is the “/boot/vmlinuz” executable

 Identify file properties of your kernel with the command:

sudo file /boot/vmlinuz-$(uname –r)

 Can you please explain the dif ferences between the kernel,
hardware, and the program?

 The Linux kernel is the binary fi le /boot/vmlinuz… that is
largely written in C & Assembly that implements the Linux OS

 The hardware is the laptop, desktop, or vir tual machine

 The program is a user program that you write such as the
examples we’ve reviewed in class (i .e. fork.c)

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

FEEDBACK - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.7Slides by Wes J. Lloyd

 What are trap tables and trap handlers?“
 TRAP TABLE:

The x86 processor uses a table known as the interrupt descriptor
table (IDT) to determine how to transfer control when a trap occurs.
The x86 allows up to 256 different interrupt or exception entry
points into the kernel, each with a different interrupt vector.

 TRAP HANDLERS:
Trap handlers are OS kernel functions that are pointed to by the trap
table. These are “event handlers” that respond to various traps.

 What is the difference between system APIs and system calls?
Are Fork(), wait(), exec() both system APIs and system calls?
 A system call is the action of actually calling the system API

 A system API is the function as defined in the OS

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

FEEDBACK - 5

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.8Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

OBJECTIVES – 4/13

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.9Slides by Wes J. Lloyd

CH. 6:
LIMITED DIRECT

EXECUTION

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.17

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

MULTITASKING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.10Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.20

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.11Slides by Wes J. Lloyd

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

MULTITASKING - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.12Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.24

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.13Slides by Wes J. Lloyd

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.25

QUESTION: TIME SLICE

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.26

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.14Slides by Wes J. Lloyd

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.28

CONTEXT SWITCH - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.15Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.29

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.30

Context Switch

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.16Slides by Wes J. Lloyd

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.32

PREEMPTIVE KERNEL

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.17Slides by Wes J. Lloyd

WE WILL RETURN AT
5:10PM

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.33

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.18Slides by Wes J. Lloyd

CHAPTER 7-
SCHEDULING:

INTRODUCTION

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.35

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time
 The time at which the job completes minus the time at which

the job arrived in the system

 How is turnaround time different than execution time?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.19Slides by Wes J. Lloyd

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.37

SCHEDULING METRICS - 2

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.38

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.20Slides by Wes J. Lloyd

 FIFO: first in, first out

 Very simple, easy to implement

 Consider

 3 x 10sec jobs, arrival: A B C, duration 10 sec each

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

OBJECTIVES – 4/13

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.21Slides by Wes J. Lloyd

 Given that we know execution times in advance:

 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C, duration a=100 sec, b/c=10sec

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time: duration a=100s, b/c=10s

 A @ t=0sec, B @ t=10sec, C @ t=10sec

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.42

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.22Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

OBJECTIVES – 4/13

 Consider: duration a=100sec, b/c=10sec

 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.44

SCTF:
SHORTEST TIME TO COMPLETION FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.23Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

OBJECTIVES – 4/13

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO

 can perform poorly with respect to response time

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.24Slides by Wes J. Lloyd

 Questions from 4/8

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Chapter 6: Limited Direct Execution
 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

 Chapter 8: Multi-level Feedback Queue

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

OBJECTIVES – 4/13

 Run each job awhile, then switch to another distr ibuting the
CPU evenly (fairly)

 Scheduling Quantum
is called a t ime slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.25Slides by Wes J. Lloyd

 ABC arrive at time=0, each run for 5 seconds

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.49

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.26Slides by Wes J. Lloyd

 STCF scheduler

 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.51

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.52

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.27Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.53

Which scheduler, this far, best addresses fairness
and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

QUESTION: SCHEDULING FAIRNESS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.28Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

SCHEDULING METRICS

A B C
0 400 500 700

Example:

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.56

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.29Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.57

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

SCHEDULING METRICS

AB C
0 100 300 700

Example:

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.30Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.59

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.60

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.31Slides by Wes J. Lloyd

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.61

 Chapter 8: Multi-level Feedback Queue
 MLFQ Scheduler

 Job Starvation

 Gaming the Scheduler

 Examples

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.62

OBJECTIVES

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.32Slides by Wes J. Lloyd

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.63

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.64

MLFQ - 2 Round-Robin
within a Queue

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.33Slides by Wes J. Lloyd

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.65

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.66

MLFQ: LONG RUNNING JOB

Priority

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.34Slides by Wes J. Lloyd

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.67

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)
 Low response time is good for B

 A continues to make progress

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.68

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.35Slides by Wes J. Lloyd

Starvation

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.69

MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.70

MLFQ: ISSUES - 2

Priority becomes stuck

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.36Slides by Wes J. Lloyd

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.71

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

 Prevents starvation

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.72

RESPONDING TO BEHAVIOR CHANGE - 2

With

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.37Slides by Wes J. Lloyd

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.73

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fil ls up,
starves Q1 & Q0

 A makes no progress

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.74

STARVATION EXAMPLE

Starvation

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.38Slides by Wes J. Lloyd

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

MLFQ: TUNING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.39Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

 60 Queues
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command Linux

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

MLFQ RULE SUMMARY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.40Slides by Wes J. Lloyd

April 13, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L5.79

 Question:
 Given a system with a quantum length of 10 ms in its highest

queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
 E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
 n jobs always uses full time quantum (10 ms)
 Batch jobs starts, runs for full quantum of 10ms
 All other jobs run and context switch totaling the quantum per cycle
 If 10ms is 5% of the CPU, when must the priority boost be ???
 ANSWER Priority boost should occur every 200ms

April 13, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.80

EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/13/2021

L5.41Slides by Wes J. Lloyd

QUESTIONS

