
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.1Slides by Wes J. Lloyd

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.2Slides by Wes J. Lloyd

 15% off textbook code: INSPIRE15 (through Friday April 9)

 https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

TEXT BOOK COUPON

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 8, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

ONLINE DAILY FEEDBACK SURVEY

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.3Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.5

 Please classify your perspective on material covered in today’s
class (50 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.91 ( - previous 6.92)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.67 ( - previous 5.57)

April 8, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

MATERIAL / PACE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.4Slides by Wes J. Lloyd

 Can we say the number of tasks is the number of processes?
 YES
 Processes are identified as “tasks” in top

 How are memory leaks taken care of when we close a
program?
 When a program is closed, all memory is freed

 Does the OS keep track of what parts of memory were being
used by a program even if the program itself dereferences it?
 Unlike Java, C does not have automatic garbage collection
 A programmer releases malloc’d memory using the free() function
 The OS tracks the location of the heap. The data may still

reside on the heap but it is no longer referenced. Allocating
new variables on the heap may result in finding the old data.
The values can be seen if the new variables are not initialized.
April 8, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L4.7

FEEDBACK

 I ’m confused about the differences between the READY
and BLOCKED process states

 BLOCKED: can not run, waiting on I/O to finish

 READY: is able to run, but not yet scheduled on the CPU

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.5Slides by Wes J. Lloyd

 Can you fork a process multiple times?
 Yes

 Can a parent have more than one child?
 Yes

 Can a child have a child and become a parent?
 Yes

 I saw in a diagram on pg 8 of the lecture 3 slides that you
can keep forking but if the child process's PID is 0 then
how can you make a new child with a process PID 0 and
then differentiate which is the parent?
 The child can call getPID() to discover its true PID

 When the child calls fork, it will also receive back its PID

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK - 3

 How is prioritization between the parent and child
processes done af ter the call to fork() ?

 The operating system schedules which process goes next

 If the computer has multiple cores, they may be scheduled
to run at the same time

 The programmer can enforce execution ordering by using
the wait() API

 Is there a similar command to fork() that can create a
child process without also copying memory, registers, and
the program counter?

 Yes, these are threads, and the API is pthread_create()

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

FEEDBACK - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.6Slides by Wes J. Lloyd

 What is overhead?

 Question for the class…

 (Assignment questions with example)
As I researched and understood, we have several
command options to f ind the number of processes
(question #1 ex: ""ps"" or ""top"").

 Is it okay to use any commands from these options, or do
you expect specific commands which were mentioned
from the lecture?

 Any command can be used

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

FEEDBACK - 5

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.7Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

OBJECTIVES – 4/8

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.8Slides by Wes J. Lloyd

CHAPTER 5:
C PROCESS API

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.15

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

fork()

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.9Slides by Wes J. Lloyd

 p1.c

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.10Slides by Wes J. Lloyd

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.19

:(){ :|: & };:

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.11Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

wait()

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.12Slides by Wes J. Lloyd

 Deterministic ordering of execution

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

FORK EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.13Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

OBJECTIVES – 4/8

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null -terminated string
ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

exec()

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.14Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

EXEC() - 2

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.15Slides by Wes J. Lloyd

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.16Slides by Wes J. Lloyd

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.17Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.33

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

QUESTION: PROCESS API

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.18Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

OBJECTIVES – 4/8

CH. 6:
LIMITED DIRECT

EXECUTION

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.36

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.19Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

OBJECTIVES – 4/8

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

VIRTUALIZING THE CPU

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.20Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.21Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

DIRECT EXECUTION - 2

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

CONTROL TRADEOFF

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.22Slides by Wes J. Lloyd

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

CONTEXT SWITCHING OVERHEAD

Time

Overhead

WE WILL RETURN AT
5:10PM

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.44

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.23Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

OBJECTIVES – 4/8

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

LIMITED DIRECT EXECUTION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.24Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

OBJECTIVES – 4/8

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

CPU MODES

access no access

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.25Slides by Wes J. Lloyd

 User mode: ring 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: ring 0 – trusted

 All instructions and registers enabled

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

CPU MODES

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.26Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.27Slides by Wes J. Lloyd

Exception type
Synchronous vs.
asynchronous

User request vs.
coerced

User maskable vs.
nonmaskable

Within vs. between
instructions

Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

EXCEPTION TYPES

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.54

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.28Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.55

Computer BOOT Sequence:
OS with Limited Direct Execution

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.29Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

MULTITASKING

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.30Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.59

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

QUESTION: MULTITASKING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.31Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.32Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.63

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

QUESTION: TIME SLICE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.33Slides by Wes J. Lloyd

 Questions from 4/6
 C Review Survey – Closes Friday Apr 9
 Assignment 0

 Chapter 5: Process API
 fork(), wait(), exec()

 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

OBJECTIVES – 4/8

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.66

CONTEXT SWITCH

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.34Slides by Wes J. Lloyd

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.67

CONTEXT SWITCH - 2

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.68

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.35Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.69

Context Switch

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

INTERRUPTED INTERRUPTS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.36Slides by Wes J. Lloyd

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

PREEMPTIVE KERNEL

CHAPTER 7-
SCHEDULING:

INTRODUCTION

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.72

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.37Slides by Wes J. Lloyd

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.73

OBJECTIVES – 4/8

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time
 The time at which the job completes minus the time at which

the job arrived in the system

 How is turnaround time different than execution time?

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.74

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.38Slides by Wes J. Lloyd

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

SCHEDULING METRICS - 2

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.76

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.39Slides by Wes J. Lloyd

 FIFO: first in, first out

 Very simple, easy to implement

 Consider

 3 x 10sec jobs, arrival: A B C, duration 10 sec each

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.77

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.78

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.40Slides by Wes J. Lloyd

 Given that we know execution times in advance:

 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C, duration a=100 sec, b/c=10sec

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.79

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time: duration a=100s, b/c=10s

 A @ t=0sec, B @ t=10sec, C @ t=10sec

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.80

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.41Slides by Wes J. Lloyd

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.81

OBJECTIVES – 4/8

 Consider: duration a=100sec, b/c=10sec

 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.82

STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.42Slides by Wes J. Lloyd

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO

 can perform poorly with respect to response time

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.83

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain’s Fairness Index, Response time

 FIFO, SJF, STCF, RR schedulers

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.84

OBJECTIVES – 4/8

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.43Slides by Wes J. Lloyd

 Run each job awhile, then switch to another distr ibuting the
CPU evenly (fairly)

 Scheduling Quantum
is called a t ime slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.85

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.86

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.44Slides by Wes J. Lloyd

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.87

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

 STCF scheduler

 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.88

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.45Slides by Wes J. Lloyd

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.89

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.90

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.46Slides by Wes J. Lloyd

Which scheduler, this far, best addresses fairness
and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.91

QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.92

SCHEDULING METRICS

A B C
0 400 500 700

Example:

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.47Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.93

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.94

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.48Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.95

SCHEDULING METRICS

AB C
0 100 300 700

Example:

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.96

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/8/2021

L4.49Slides by Wes J. Lloyd

April 8, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.97

QUESTIONS

