TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

The Process APl &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

April 8, 2021 School of Engineering and Technology, University of Washington Jl Tacoma

OBJECTIVES - 4/8

| = Questions from 4/6 |
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2021]
Gl 2 e T T T o ey A T = TPy w2

TEXT BOOK COUPON

= 15% off textbook code: INSPIREL5 (through Friday April 9)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

TCS5422: Operating Systems [Spring 2021]
EIE e oolefEnsinest K haolosUnversity S = TR

‘ u3 ‘

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCSS422 A » Assignments

P— ‘ ‘

Home

Announcements

e * Upcoming Assignments

Slans | s TCSS 422 - Online Dally Feedback Survey - 4/1 |

: Avallble il Agr .3 11:3%m | Dus Apr 3t 10pm | 41t

DNicecdinne AR —_
e e O I

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
Question 1 05pts

Onascale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 a B 6 7 8 B 10
Nostly Equar wostly
Review To e New and Review New to He
Question 2 05pts

Please rate the pace of today’s class:

1 2 3 4 s & 71 8 8 12
TCSS422: Computer Operaling Systems [Spring 2021]
Ll Chi] School of Engineering and Technology, University of Washington - Tacoma L5

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (50 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.91 ({ - previous 6.92)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.67 (T - previous 5.57)

Slides by Wes J. Lloyd

April 8, 2021 TCS5422: Computer Operating Systems [Spring 2021] e
School of Technology, University of Tacoma

4/8/2021

L4.1

TCSS 422 A — Spring 2021 4/8/2021
School of Engineering and Technology

FEEDBACK FEEDBACK - 2

= Can we say the number of tasks is the number of processes?
= YES
= Processes are identified as “tasks” in top

" |’'m confused about the differences between the READY
and BLOCKED process states

= BLOCKED: can not run, waiting on 1/0 to finish

= READY: is able to run, but not yet scheduled on the CPU

= How are memory leaks taken care of when we close a
program?

= When a program is closed, all memory is freed

= Does the OS keep track of what parts of memory were being
used by a program even if the program itself dereferences it?
= Unlike Java, C does not have automatic garbage collection
= A programmer releases malloc’d memory using the free() function
= The OS tracks the location of the heap. The data may still
reside on the heap but it is no longer referenced. Allocating
new variables on the heap may result in finding the old data.

The values can be seen if the new variables are not initialized.

TCS5422: Operating Systems [Spring 2021]
EE e o T B s oy Tty A T = TRy w7 Gl 2

TCS5422: Operating Systems [Spring 2021]

4
School of Engineering and Technology, University of Washington - Tacoma ‘ e ‘

FEEDBACK - 3 FEEDBACK - 4

= Can you fork a process multiple times? = How Is prioritization between the parent and chlld

" Yes processes done after the call to fork() ?
= Can a parent have more than one child? =The operating system schedules which process goes next

" Yes = If the computer has multiple cores, they may be scheduled
= Can a chlid have a chlld and become a parent? to run at the same time

" Yes =The programmer can enforce execution ordering by using
= | saw in a diagram on pg 8 of the lecture 3 slides that you the wait() API

can keep forking but If the chlld process's PID is 0 then
how can you make a new chlld with a process PID 0 and
then differentlate which Is the parent?

= The child can call getPID() to discover its true PID

= When the child calls fork, it will also receive back its PID

= |s there a simllar command to fork() that can create a

chlid process without also copylng memory, registers, and
the program counter?

= Yes, these are threads, and the APl is pthread_create()

TCSS422: Oy ing Sy [Spring 2021] TCSS422: O ing S\ [Spring 2021]
QiR School of E:gei'r\ae"e"r?ngv::\ednéchzzifgy, University of Washington - Tacoma ‘ Lo ‘ April 8, 2021 School ofE::i::Er:?nsy::-T"f:ch‘:\:Tfew University of Washington - Tacoma 110
= What Is overhead? = Questions from 4/6
= Question for the class... | = C Revlew Survey - Closes Friday Apr 9 |

= Assignment O
= (Assignment questions with example)
As | researched and understood, we have several
command options to find the number of processes o . .
(question #1 ex: ""ps" or ""top""), = Cha.pter 6: Lm.nted Direct Execution
= s jt okay to use any commands from these options, or do Eilr:-:i;:):iei:::to:xecution
you expect specific commands which were mentioned B
from the lecture?

= System calls and traps
= Any command can be used = Cooperative multi-tasking

= Context switching and preemptive multi-tasking

= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]
CAIE L RERERE2E Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma w2

Slides by Wes J. Lloyd L4.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2021]
EE e e Ty o s oy Uty T - TR

‘ 413 ‘

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

CHAPTER 5:
C PROCESS API

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
b School of Engineering and Technology, University of Washington -

TCSS422: Operating Systems [Spring 2021]
Qrulez02t ST N e 5 e i = e L4

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon polint
= Book says “pretty odd”
= Creates a dupllcate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Spring 2021]
Gl 2 Sehoolof Ergineerins andTechnokoeyjUnvest f Tecoma

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int re = fork();
if (re < 0) | fork fai
fprintf (stderr, "fork failed\
exit (1);
) if (re == 0) {
printf("hello, I am child (pi

xi

w process)
%d)\n", (int) getpid());
) - . s path (ma

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

irn 07

TCS5422: Operating Systems [Spring 2021]
CAIE SeFoo[of Enginearing andiechnolonyiUnve sty q Tacoma

‘ a7 ‘

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> . /pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

= CPU scheduler determines which to run first

TCSS422: Operating Systems [Spring 2021]
RERERE2E Sehool of Engineering and Technolosy/University ot Washi Tacoma

[s]

Slides by Wes J. Lloyd

4/8/2021

L4.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

P SN e S

TCSS422: Operating Systems [Spring 2021]

April 8, 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ 1419 ‘

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API

= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2021]
EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2021]
CAIE Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 1“3 ‘

School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2021]
Gl 2 e T T T o ey A T = TPy .20
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <sys/wait.n>
int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
nt re = fork():
(re < 0) { 3. ;
fprintf (stderr, "fork failed\n");
exit(1);
) (rc = 0) {
printf("hello, T am child (pid:¥d)\n", (int) getpid());
) { (
q int we = wait (NULL);
printf("hello, I am parent of d (wc:sd) (pid:%d)\n",
rc, we, (int) getpid())
)
0;
}
TCS5422: Operating Systems [Spring 2021]
Gl 2 ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma w2
® Linux example
April 8,2021 TCSS422: Operating Systems [Spring 2021] ‘ 14.24 ‘

Slides by Wes J. Lloyd

4/8/2021

L4.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API

= fork(), wait(),
= Chapter 6: Limited Direct Execution

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2021]
EE e o T B s oy Tty A T = TRy

‘ u2s ‘

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argi, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April 8, 2021 TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma ‘ L.26

EXEC() - 2

= Common use case:
= Write a new program which wraps a legacy one

= Legacy program thought of as a “black box”

= We don’t want to know what is inside... @

= Provide a new interface to an old system: Web services

Ouput
ot —— [T

internatbehovior of the code is unknorn

TCS5422: Operating Systems [Spring 2021]
EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 27 ‘

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <sys/wait.h>

int main(int arge, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
nt rc = fork();
(xc < 0) {
fprintf (stderr, "fork failed\n");
exit (1) ;
) (xc == 0) { (
printf("hello, I am child (pid:%d)\n", (int) getpid());
‘ char *myargs[3]
myargs[0] = strdup("we");
myargs[1] = strdup ("p3.c");
myargs[2] = NULL;

April 8, 2021 TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma ‘ .28 ‘

EXEC EXAMPLE - 2

printf("this shouldn’t print out");

‘ execvp (myargs (0], myargs);
i

nt = wait (NULL) ;
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid());:

07

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCS5422: Operating Systems [Spring 2021]
CAIE Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 1429 ‘

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
#include <fentl.h>
#include <sys/wait.h>
main(int arge, char *argv(]){
int rk();
(

< 0) { iled;

fprintf (stderr, "fork failed\n");
exit(1);

} (rc

close (STDOUT_F ;
‘ open ("./pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

TCS5422: Operating Systems [Spring 2021]

Qrulez028 I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma ‘ 130 ‘

Slides by Wes J. Lloyd

4/8/2021

L4.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

FILE MODE BITS

- S_IRWKU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
eXecute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April , 2021 TCS$4|22; Operating Systems [Spring 2021]

School o Technology, ity

Tacoma

1431

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs(3];
myargs[0] = strdup ("wc"); program: "we' (word count
myargs[1] = strdup("pd.c"); t: file t t

myargs{2] = NULL; i v
execvp (myargs [0], myargs); rur i count

int we = wait (NULL);

rn 0;

prompt> . /pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Spring 2021]
e H

4.
School of Technology, i i Tacoma .32

‘ April 8, 2021

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() None of
the
above

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

April 8, 2021

TCS5422: Operating Systems [Spring 2021] 434
e H 5

School o Technology, i i Tacoma

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API

= fork(), wait(), exec()
| = Chapter 6: Limited Direct Execution |

= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

April 8, 2021 TCS$4|22; Operating Systems [Spring 2021]

School o Technology, ity

- Tacoma

u3s

Slides by Wes J. Lloyd

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Spring 2021]

(Al B A School of Engineering and Technology, University of Washington -

4/8/2021

L4.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

April , 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 137

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

TCS5422: Operating Systems [Spring 2021]

Qrulez02t School of Engineering and Technology, University of Washington - Tacoma

1338

COMPUTER BOOT SEQUENCE:
0S WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

April s, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 1339

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn’t be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

13.40

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform /0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

April 8, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 341

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

= Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APlIs (system calls), difficult to use

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

1342

Slides by Wes J. Lloyd

4/8/2021

L4.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

Context Switching Total cost of

context switching

Multitasking —

'H 'H 'H .

vs. Multitasking with context switching
— - — 1
EEEEEEEEEDEN
Sequential

Overhead - N
I

CONTEXT SWITCHING OVERHEAD

Time

April , 2021 TCS$4|22; Operating Systems [Spring 2021]

School o Technology, ity i Tacoma

343

WE WILL RETURN AT

5:10PM

TCSS422: Operating Systems [Spring 2021]

(Al A School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()

= Chapter 6: Limited Direct Execution
= Direct execution

| = Limited direct execution |

= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

April 8,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

.45

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

April 8, 2021 14.46

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, Universi i Tacoma

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

‘ April 8,2021 ‘

.47

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

April 8, 2021 TBSMZ; Operating Systems [Spring 2021]

44
School of Technology, University of Washi Tacoma Lads

Slides by Wes J. Lloyd

4/8/2021

L4.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

CPU MODES

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction

= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

April 8,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri chnology, University

Tacoma

‘ .49

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()

= Chapter 6: Limited Direct Execution

= Direct execution
= Limited direct execution
= CPU modes
| = System calls and traps |
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2021]

Qrulez02t School of Engineering and Technology, University of Washington - Tacoma

| s |

SYSTEM CALLS

= Implement restricted “OS” operations

=Device I/0 (e.g.file 1/0)

= Creating/destroying processes

= Kernel exposes key functions through an API:

= Task swapping: context switching between processes
= Memory management/allocation: malloc()

April s, 2021 TCSS42§: Operating Systems [Spring 2021]

school of chnology, ity

Tacoma

‘ 151

= Trap: any transfer to kernel mode

= Three kinds of traps

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code N\ intemupt Service Rowtine
Intermupt

loop({

imstruction 3

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCS5422: Operating Systems [Spring 2021]

EXCEPTION TYPES

Synchronousva. Userrequestvs. Usermasiableva.
ynchronous ooerved nonmaskable
V0 devico request

Whthinva.between
Instructions

prm— Coerced Nonmaskable setween Resume
w Synctvanous s recuest Nonmaskable Between Resume
E——— Symotvonous s recuest Usar maskatle Setwsen Resume
m Symotvonous rp— Usar maskatle Between Resume
m Gz — . winin Resume
o e Synchronous Coerced User maskable Within Resume
orundection
TR oo = T T =
M Symotvonous Coorced Usar maskatle witin Resume
{Memory protection violtion Synchronous Coerced Nonmaskable Within Resume
[— e o (i wiin Terminate
m e o [wiin Terminate
T eyrconous == e = i)
TCSS422: Operating Systems [Spring 2021]
April 8, 2021 petating Systems[Sprine 20211 I ws3
School of Technology, y Tacoma

Slides by Wes J. Lloyd

4.
Gl 2 ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma ‘ L2 ‘
0S @ boot Hardware
(kernel modie)
- initialize trap table
remember address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process st
Allocate memory for program
Load program into memory
Setup user stack with argy
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
‘ move to user mode
jump to main
Run main()
' Call system
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
turn-from-t
fEomne restore regs from kernel stack
move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process
Remove from procsss list
TCSS422: Operating Systems [Spring 2021]
Al G School of Engineering and Technology, University of Washington - Tacoma L4.54

4/8/2021

L4.9

TCSS 422 A — Spring 2021 4/8/2021
School of Engineering and Technology

0S @ boot Hardware

(kernel mode)

initialize trap table
remember address of
e hander OBJECTIVES - 4/8
Hardware Program

(kernel mode) (user mode)

Create entry for process list = Questions from 4/6

Allocate memory for program .)
Load program into memory = C Review Survey - Closes Friday Apr 9

Setup user stack with argy

= Assignment O

Computer BOOT Sequence: = Chapter 5: Process API

OS with Limited Direct Execution = fork(), wait(), exec()
= Chapter 6: Limited Direct Execution

move to kernel made = Direct execution
jump to trap handler

b e il = Limited direct execution

retum: from-rap restore regs from kernel stack = CPU modes
move to user mode
jump to PC after trap = System calls and traps

retur from main | = Cooperative multl-tasking |

trap (via exit ()) N N . . .
Free memory of process = Context switching and preemptive multi-tasking

Remove from process list

TCSS422: Operating Systems [Spring 2021] April 8,2021 TCS5422: Operating Systems [Spring 20211 1456

L4.55 ‘

ARriSI2n2 School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma
= How/when should the OS regain control of the CPU to = How/when should the OS regain control of the CPU to
switch between processes? switch between processes?
= Cooperative multitasking (mostly pre 32-bit) = Coopa
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control {
User programs must call a special yleld system call
When performing 1/0 V perio 8
Illegal operations lllegal operations
= (POLLEV) = (POLLEV)
What problems could you for see with this approach? What problems could you for see with this approach?
TCSS422: Of ing Sy [Spring 2021] TCSS422: O ing S\ [Spring 2021]
April8, 2021 Schoolof Engnsaringand Technolog, Universy o Washington - Tacoma s Aprl8,2021 SchoolofEngineeringand Technology Univrsty of Washington - Tacoma s

What problems exist for regaining the control

W of the CPU with cooperative multitasking QSSIONE WU TS 6

OSes?

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

n u April 8, 2021 TCS5422: Operating Systems [Spring 2021]

4
- School of Technology, University of Washi Tacoma L0

Slides by Wes J. Lloyd L4.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

=Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Las1

April 8,2021

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

April 8,2021 14.62

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

|} April 8, 2021

TCSS422: Operating Systems [Spring 2021
u B!

L4, s!.

QUESTION: TIME SLICE

" For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCS5422: Operating Systems [Spring 2021]

4
School of Engineering and Technology, University of Washington - Tacoma L4

April 8, 2021

OBJECTIVES - 4/8

= Questions from 4/6
= C Review Survey - Closes Friday Apr 9
= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

| = Context switching and preemptive multi-taskingl

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

1465

‘ April 8,2021

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCS5422: Operating Systems [Spring 2021]

4
School of Engineering and Technology, University of Washington - Tacoma L6

April 8, 2021

Slides by Wes J. Lloyd

4/8/2021

L4.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

05 @ boot

Hardware

(kernel mode)

‘ initialize trap table
-mn interrupt timer

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

0S @ run

Program
(kernel mode) Hardware (user mode)
B proces A
timer interruj

save regs(A) to k-stack(A)
move to kermel mode
jump to trap handler
Handle the trap
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(8)

move to user mode
‘ Process B

jump to B's PC

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
J School of Engineering and Technology, University of Washington - Tacoma

L4.68

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Operating Systems [Spring 2021]
April 8, 2021 e e Technology, University . R 14.67
0S @ boot
(kernel mode) s
ize trap table
remember address of ...
syscall handler
timer handler
start interrupt timer
start timer
interrupt CPU in X ms
Hardware Program
Context Switch
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B's PC
q Process B
N TCSS422: Operating Systems [Spring 2021]
Ll Gz School of Engineering and Technology, University of Washington - Tacoma L4.69

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Spring 2021]
Gl 2 5ehoollof Er pineering andiTech nolosyiUniversity f Tecoma

23

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
= the interrupt is more important

TCS5422: Operating Systems [Spring 2021]
CAIE SeFoo[of Enginearing andiechnolonyiUnve sty q Tacoma

[un]

Slides by Wes J. Lloyd

CHAPTER 7-

SCHEDULING:
INTRODUCTION

April 8, 2021 TCSS422: Operating Systems [Spring 2021]
0 School of Engineering and Technology, University of Washington -

4/8/2021

L4.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/8

= Chapter 7: Scheduling Introduction
= Schedullng metrics
Turnaround time, Jain's Falrness Index, Response time

= FIFO, SJF, STCF, RR schedulers

TCS5422: Operating Systems [Spring 2021]

EE e o T B s oy Tty A T = TRy

[un]

SCHEDULING METRICS

= Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

= Scheduling Metric #1: Turnaround time

= The time at which the job completes minus the time at which
the job arrived in the system

‘ Trurnaround = T compietion — Tarrival
)

= How is turnaround time different than execution time?

TCS5422: Operating Systems [Spring 2021]

Qrulez02t School of Engineering and Technology, University of Washington - Tacoma

474 ‘

SCHEDULING METRICS - 2

= Scheduling Metric #2: Fairness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

. 2
(@1, %2500 ,%0) = %
= n processes ne i T
= x; is time share of each process
= worst case = 1/n
= best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x;=.2, x,=.7, x3=.1, fairness=.62
= With n=3 and x;=.33, x,=.33, x3=.33, fairness=1

TCS5422: Operating Systems [Spring 2021]

EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

[wn]

OBJECTIVES - 4/8

= Chapter 7: Scheduling Introduction
= Scheduling metrics
Turnaround time, Jain’s Fairness Index, Response time

SJF, STCF, RR schedulers

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

476 ‘

SCHEDULERS

= FIFO: first in, first out
=Very simple, easy to implement
= Consider
=3 x 10sec jobs, arrival: A B C, duration 10 sec each

T T T T 1
40 60 80 100 120

Time (Second)

. 10 + 20 + 30
Average turnaround time = — 3 = 20 sec

April 8, 2021 ‘ TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

[wr]

OBJECTIVES - 4/8

= Chapter 7: Scheduling Introduction
= Scheduling metrics
Turnaround time, Jain’s Fairness Index, Response time
= FIFO,@ STCF, RR schedulers

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

478 ‘

Slides by Wes J. Lloyd

4/8/2021

L4.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

SJF: SHORTEST JOB FIRST

= Given that we know execution times in advance:
= Run in order of duration, shortest to longest
= Non preemptive scheduler
=This is not realistic

= Arrival: A B C, duration a=100 sec, b/c=10sec
€ A

60 80

Time (Second)

Average turnaround ti 50 sec

3

TCS5422: Operating Systems [Spring 2021]

EE ‘ AT o T B i oy ATt A T T

79

SJF: WITH RANDOM ARRIVAL

= |f jobs arrive at any time: duration a=100s, b/c=10s
=" A @ t=0sec, B @ t=10sec, C @ t=10sec

[B,C arrive]

40 60

Time (Second)

100 + (110 — 10) + (120 — 10) _

Average turnaround time = 3 = 103.33 sec

TCS5422: Operating Systems [Spring 2021]

4
School of Engineering and Technology, University of Washington - Tacoma L0

‘ April 8, 2021

OBJECTIVES - 4/8

= Chapter 7: Scheduling Introduction
= Scheduling metrics
Turnaround time, Jain’s Fairness Index, Response time

= FIFO, SJF,[STCF| RR schedulers

April 8,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

1481

STCF - 2

= Consider: duration a=100sec, b/c=10sec
- Alen=100 Aarrival=0
" Blen=10' Bavrivﬁl=10Y clen=10' Carvival=10

[B,C arrive]

AyB C A
T T T T 1
0 20 40 60 80 100 120

Time (Second)

=50 sec

(120 -0) + (20— 10) + (30 — 10) _
B

Average turnaround time =

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

482

SCHEDULING METRICS - 3

m Scheduling Metric #3: Response Time
= Time from when job arrives until it starts execution
‘ Tresponse = Tfirstrun - Tarrivul

= STCF, SJF, FIFO
= can perform poorly with respect to response time

response time?

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

‘ April 8,2021 ‘

1483

Slides by Wes J. Lloyd

OBJECTIVES - 4/8

= Chapter 7: Scheduling Introduction
= Scheduling metrics
Turnaround time, Jain’s Fairness Index, Response time

= FIFO, SJF, STCF,|RR schedulers

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

La84

4/8/2021

L4.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

RR: ROUND ROBIN

= Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

= Scheduling Quantum I Process I Burst Time
is called a time slice [zl 12

RR is fair, but performs poorly on metrics

such as turnaround time

Round Robin scheduling algorithm

Gantt chart
Scheduling [PL[P2[P3]P4[P5|PL[P2)P4a] P1]
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 3m9
April 8, 2021 \ e APy e ass

RR EXAMPLE

= ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
consldered

0+5+10
0 15 Taverage response = —3 = S5sec
Time (Second)
SJF (Bad for Response Time
ABCABCABCABCABC
T 0+1+2 1
= = 1sec
0 : 20 5 iA S > average response 3

Time (Second)
RR with a time-slice of 1sec (Good for Response Time)

TCS5422: Operating Systems [Spring 2021]

Qrulez02t School of Engineering and Technology, University of Washington - Tacoma

14.86

ROUND ROBIN: TRADEOFFS

SCHEDULING WITH I/0

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

Low overhead from
context switching

High overhead from
context switching

=Time slice impact:

=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10
=Fairness: round robin is always fair, J=1

TCS5422: Operating Systems [Spring 2021]

EIE ‘ e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

1487 ‘

= STCF scheduler
=A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

= Without considering 1/0:
B

A A A A A B B B B
. . . l CPU utilization=100/140=71%
| — T T T T)
0 20 40 60 00 120

80

Time (msec)

140

Poor Use of Resources

TCS5422: Operating Systems [Spring 2021]

Qrulez028 School of Engineering and Technology, University of Washington - Tacoma

La.88

SCHEDULING WITH I/0 - 2

= When a job initiates an 1/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU
= When I/0 completes - raise interrupt
=Unblock A, STCF goes back to executing A: (10ms sub-job)
A A A A B A B

@
@
@

2
Z

. [Cpu utilization = 100/100=100%

T T T
80 100 120

Time (msec)

»_-

°
~N
3
&
2

Overlap Allows Better Use of Resources

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 1489

April 8,2021 ‘

Slides by Wes J. Lloyd

Which scheduler, thus far, best address fairness

and average response time of jobs?

|:—| Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1
Shortest Job First (SJF) | 2
Shortest Time to
Completion First (STCF) | 3
Round Robin |4
None of the Above | §
All of the Above |
] n
L] n

4/8/2021

L4.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

QUESTION: SCHEDULING FAIRNESS

SCHEDULING METRICS

= Which scheduler, this far, best addresses fairness
and average response time of jobs?

= First In - First Out (FIFO)

=Shortest Job First (SJF)

mShortest Time to Completion First (STCF)
= Round Robin (RR)

= None of the Above

= All of the Above

TCS5422: Operating Systems [Spring 2021]

= Consider Three jobs (A, B, C) that require:
time,=400ms, time;=100ms, and time,=200ms

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.
Example:
0 400 500 700

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

.92

April 8, 2021

EE AT o T B i oy ATt A T T Lot

| |

u CJ When poll is active, respond at PollEv.com/wesleylloyd641 -

51 Text WESLEYLLOYD641 to 22333 once to join
What is the Average Response Time of the
FIFO scheduler?

u |

]]

u L3 When poll is active, respond at PollEv.com/wesleylloyd641 -

=1 Text WESLEYLLOYD641 to 22333 once to join

What is the Average Turnaround Time of the
FIFO scheduler?

SCHEDULING METRICS

= Consider Three jobs (A, B, C) that require:
time,=400ms, timez=100ms, and time,=200ms

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the
average response time (ART) and

average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

Example:
B C .
0 100 300 700

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 1495

April 8,2021 ‘

u L3 When poll is active, respond at PollEv.com/wesleylloyd641 -

=1 Text WESLEYLLOYD641 to 22333 once to join

What is the Average Response Time of the
Shortest Job First Scheduler?

Slides by Wes J. Lloyd

4/8/2021

L4.16

TCSS 422 A — Spring 2021
School of Engineering and Technology

J When poll is active, respond at PollEv.com/wesleylloyd641
&1 Text WESLEYLLOYD641 to 22333 once to join

What is the Average Turnaround Time of the
Shortest Job First Scheduler?

Slides by Wes J. Lloyd

QUESTIONS

4/8/2021

L4.17

