

FEEDBACK Can we say the number of tasks is the number of processes? YES Processes are identified as "tasks" in top How are memory leaks taken care of when we close a program? When a program is closed, all memory is freed Does the OS keep track of what parts of memory were being used by a program even if the program itself dereferences it? Unlike Java, C does not have automatic garbage collection A programmer releases malloc'd memory using the free() function The OS tracks the location of the heap. The data may still reside on the heap but it is no longer referenced. Allocating new variables on the heap may result in finding the old data. The values can be seen if the new variables are not initialized. April 8, 2021 TESSE2: Operating Syttems [Spring-2021] School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 3 Can you fork a process multiple times? Yes Can a parent have more than one child? Yes Can a child have a child and become a parent? Yes I saw in a diagram on pg 8 of the lecture 3 slides that you can keep forking but if the child process's PID is 0 then how can you make a new child with a process PID 0 and then differentiate which is the parent? The child can call getPID() to discover its true PID When the child calls fork, it will also receive back its PID April 8, 2021 TCSS422: Operating Systems [Spring 2021] School of Engineering and Technology, University of Washington - Tacoma


```
FORK WITH WAIT - 2

Deterministic ordering of execution

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

April 8, 2021

ICSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington-Tacoma
```



```
#include <stdio.h>
#include <stdio.h>
#include <stdib.h>
#include <stdib.h>
#include <stdis.h>
#include <stdis.h>
#include <stdis.h>
#include <fraing.h>
#include <fraing.h

int main (int argc, char *argv[] {
    int rc = fork();
    if (rc == 0) { // fork failed; exit
        cxit();
    }
} else if (rc == 0) { // hild: redirect standard output to a file close (STDOUT FILENO);
    open ("./p4.output", O_CREAT[O_WRCNLY[O_TRUNC, S_IRNXU]);

April 8, 2021

| TCSS122: Operating Systems [Spring 2021]
| School of Engineering and Technology, University of Washington-Tacoma
```

```
FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRWSR
read permission, owner
S_INUSR
write permission, owner
S_ECOMPA
S_IRWXG
read, write, execute/search by group
S_IRWXG
read, write, execute/search by group
S_IRWXG
read, write, execute/search by group
S_IRWRD
write permission, group
S_IXGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IROTH
School of Engineering and Technology, University of Washington-Taxoma

14.31
```


For an OS that uses a system timer to force arbitrary context switches to share the CPU, what is a good value (in seconds) for the timer interrupt?

April 8, 2021

TCSS422-Operating Systems (Spring 2021)
Starttle precedence of Engineering Interrupts/Policy Christosky (Christosky Christosky Christ

OBJECTIVES - 4/8

Questions from 4/6
C Review Survey - Closes Friday Apr 9
Assignment 0
Chapter 5: Process API
fork(), wait(), exec()
Chapter 6: Limited Direct Execution
Direct execution
Limited direct execution
CPU modes
System calls and traps
Cooperative multi-tasking
Context switching and preemptive multi-tasking
April 8, 2021

| TCSS42: Operating Systems [Spring 2021] | School of Engineering and Technology, University of Washington - Tacoma

 OBJECTIVES - 4/8

Chapter 7: Scheduling Introduction
Scheduling metrics
Turnaround time, Jain's Fairness Index, Response time
FIFO SJF, STCF, RR schedulers

TCSS422: Operating Systems (Spring 2021)
School of Engineering and Technology, University of Washington - Tacoma

SCHEDULERS

FIFO: first in, first out

• Very simple, easy to implement

• Consider

• 3 x 10sec jobs, arrival: A B C, duration 10 sec each

A B C

Time (Second)

Average turnaround time = 10 + 20 + 30 / 3 = 20 sec

April 8, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington-Tacoma

