
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.1Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 4/6

 15% off textbook code: INSPIRE15 (through Friday April 9)

 https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

TEXT BOOK COUPON

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

ONLINE DAILY FEEDBACK SURVEY

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.5

 Please classify your perspective on material covered in today’s
class (61 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.92 (- previous 5.59)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.57 (- previous 5.33)

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

MATERIAL / PACE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.2Slides by Wes J. Lloyd

 When to use multi-thread and multi-core?

 “Embarrassingly parallel” programs
 MAP-REDUCE, divide and conquer

 Programs that process a large volume of data, but where processing
can be decomposed into independent chunks

 Chunks can be processed in parallel without coordination

 Processing tasks that don’t require shared memory
 Web services where each user has separate state

 Parallel algorithms and code
 Requires coordination, but is manageable through known sharing and

 What does synchronization with processes and threads mean?

 Synchronization: coordinating access to shared memory

 Applies to threads, as processes do not have shared memory

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK

 Implementation of the PIDs and threads is not yet clear

 Chapter 4 introduces processes, threads will follow

 What are the advantages of using the Linux /proc
f ilesystem?

 Provides ability to inspect low-level details of how
processes/threads are running (e.g. if you wanted to write
you own top/htop utility)

 Provides ability to inspect resource utilization and
management being provided by the operating system

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

 I feel l ike we went over the running of these programs a li tt le
fast, I am not sure if I could get these programs to run in a
terminal as lots of commands were being used on the screen.

 Can we get the today's lecture sample codes for reviewing?
 Code examples from class are linked from the schedule page:

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/

 Can we get lecture sl ides instead pdf? Some sample code
pictures were overlapped.
 This has been corrected. Slides have been reposted. Thank you !

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 3

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

MOTIVATION FOR LINUX

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS
10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.3Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

OBJECTIVES – 4/6

 Please complete the Student Background Survey

https://forms.gle/yr6Dc9x9rX516U6t6

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

STUDENT BACKGROUND SURVEY

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 4/6

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.4Slides by Wes J. Lloyd

CHAPTER 4:
PROCESSES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.19

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:
 CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?
 Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

VIRTUALIZING THE CPU

 Process comprises of:

 Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

PROCESS

A process is a running program.
 Modern OSes provide a Process API for process support

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

PROCESS API: CREATE

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup

 Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

PROCESS API: CREATE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.5Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.25

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

OBJECTIVES – 4/6

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

PROCESS STATES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a virtual file generated by Linux
 Provides a report with process related meta-data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

CONTEXT SWITCH

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.6Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.31

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

OBJECTIVES – 4/6

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.7Slides by Wes J. Lloyd

 struct task_struct, equivalent to struct proc
 The Linux process data structure
 VERY LARGE: 10,000+ bytes
 /usr/src/linux-headers-{kernel version}/include/linux/sched.h

 ~ LOC 1391 – 1852 (4.4.0-170)
 task_struct originally stored in the kernel’s stack space

 Limited to 2 x 4KB pages = 8 KB
 task_struct is LARGE, has been moved outside the kernel stack
 The smaller thread_info struct is now stored on the kernel’s stack

& provides a ptr to task_struct allocated using the slab allocator
 Slab allocator allocates memory for common data structures in Linux

 struct thread_info, provides ptr to task_struct
 thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

LINUX: STRUCTURES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login
Linux Kernel Development, 3rd edition
Robert Love
Addison-Wesley

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

LINUX STRUCTURES - 2

WE WILL RETURN AT
5:00PM

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.40

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

OBJECTIVES – 4/6

CHAPTER 5:
C PROCESS API

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.42

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.8Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

OBJECTIVES – 4/6

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

fork()

 p1.c

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

:(){ :|: & };:

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

OBJECTIVES – 4/6

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.9Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

wait()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

FORK EXAMPLE

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

OBJECTIVES – 4/6

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

exec()

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.10Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

EXEC() - 2

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.11Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.61

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

QUESTION: PROCESS API

QUESTIONS

