
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.1Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 4/6

 15% off textbook code: INSPIRE15 (through Friday April 9)

 https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

TEXT BOOK COUPON

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

ONLINE DAILY FEEDBACK SURVEY

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.5

 Please classify your perspective on material covered in today’s
class (61 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.92 ( - previous 5.59)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.57 ( - previous 5.33)

April 6, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

MATERIAL / PACE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.2Slides by Wes J. Lloyd

 When to use multi-thread and multi-core?

 “Embarrassingly parallel” programs
 MAP-REDUCE, divide and conquer

 Programs that process a large volume of data, but where processing
can be decomposed into independent chunks

 Chunks can be processed in parallel without coordination

 Processing tasks that don’t require shared memory
 Web services where each user has separate state

 Parallel algorithms and code
 Requires coordination, but is manageable through known sharing and

 What does synchronization with processes and threads mean?

 Synchronization: coordinating access to shared memory

 Applies to threads, as processes do not have shared memory

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK

 Implementation of the PIDs and threads is not yet clear

 Chapter 4 introduces processes, threads will follow

 What are the advantages of using the Linux /proc
f ilesystem?

 Provides ability to inspect low-level details of how
processes/threads are running (e.g. if you wanted to write
you own top/htop utility)

 Provides ability to inspect resource utilization and
management being provided by the operating system

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

 I feel l ike we went over the running of these programs a li tt le
fast, I am not sure if I could get these programs to run in a
terminal as lots of commands were being used on the screen.

 Can we get the today's lecture sample codes for reviewing?
 Code examples from class are linked from the schedule page:

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/

 Can we get lecture sl ides instead pdf? Some sample code
pictures were overlapped.
 This has been corrected. Slides have been reposted. Thank you !

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 3

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

MOTIVATION FOR LINUX

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS
10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.3Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

OBJECTIVES – 4/6

 Please complete the Student Background Survey

https://forms.gle/yr6Dc9x9rX516U6t6

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

STUDENT BACKGROUND SURVEY

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

OBJECTIVES – 4/6

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 4/6

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.4Slides by Wes J. Lloyd

CHAPTER 4:
PROCESSES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.19

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:
 CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?
 Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

VIRTUALIZING THE CPU

 Process comprises of:

 Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

PROCESS

A process is a running program.
 Modern OSes provide a Process API for process support

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

PROCESS API: CREATE

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup

 Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

PROCESS API: CREATE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.5Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.25

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

OBJECTIVES – 4/6

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

PROCESS STATES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a virtual file generated by Linux
 Provides a report with process related meta-data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

CONTEXT SWITCH

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.6Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.31

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

OBJECTIVES – 4/6

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.7Slides by Wes J. Lloyd

 struct task_struct, equivalent to struct proc
 The Linux process data structure
 VERY LARGE: 10,000+ bytes
 /usr/src/linux-headers-{kernel version}/include/linux/sched.h

 ~ LOC 1391 – 1852 (4.4.0-170)
 task_struct originally stored in the kernel’s stack space

 Limited to 2 x 4KB pages = 8 KB
 task_struct is LARGE, has been moved outside the kernel stack
 The smaller thread_info struct is now stored on the kernel’s stack

& provides a ptr to task_struct allocated using the slab allocator
 Slab allocator allocates memory for common data structures in Linux

 struct thread_info, provides ptr to task_struct
 thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

LINUX: STRUCTURES

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login
Linux Kernel Development, 3rd edition
Robert Love
Addison-Wesley

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

LINUX STRUCTURES - 2

WE WILL RETURN AT
5:00PM

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.40

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

OBJECTIVES – 4/6

CHAPTER 5:
C PROCESS API

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.42

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.8Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

OBJECTIVES – 4/6

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

fork()

 p1.c

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

:(){ :|: & };:

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

OBJECTIVES – 4/6

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.9Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

wait()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

FORK EXAMPLE

 Questions from 4/1

 C Review Survey – Closes Friday Apr 9

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

OBJECTIVES – 4/6

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

exec()

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.10Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

EXEC() - 2

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/6/2021

L3.11Slides by Wes J. Lloyd

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.61

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

QUESTION: PROCESS API

QUESTIONS

