TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

April 6, 2021 School of Engineering and Technology, University of Washington Jl Tacoma

OBJECTIVES - 4/6

| = Questlons from 4/1]
= C Review Survey - Closes Friday Apr 9
= Student Background Survey
= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

April6,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 132 ‘

TEXT BOOK COUPON

= 15% off textbook code: INSPIREL5 (through Friday April 9)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

TCS5422: Operating Systems [Spring 2021]
EIE e oolefEnsinest K haolosUnversity S = TR

‘ 33 ‘

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCSS422 A » Assignments

P—
Home
Announcements
i * Upcoming Assignments
Sylbis s TCSS 422 - Online Dally Feedback Survey - 4/1
E % Avallable until Apr 3 at 11:5%m | DueAgr 52t 10pm | 41 pts
Dicruccinne N Py

TCS5422: Computer Operating Systems [Spring 2021]

Qeuleiz028 School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05pts

Onascale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 a B 6 7 8 B 10
Nostly Equar wostly
Review To e New and Review New to He
Question 2 05pts

Please rate the pace of today’s class:

1 2 3 4 s & 71 8 8 12
TCSS422: Computer Operaling Systems [Spring 2021]
Ll G School of Engineering and Technology, University of Washington - Tacoma L35

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (61 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.92 (1 - previous 5.59)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.57 (T - previous 5.33)

April6,2021 TCS5422: Computer Operating Systems [Spring 2021]
School of Technology, University of Tacoma

Slides by Wes J. Lloyd

4/6/2021

L3.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

FEEDBACK

= When to use multl-thread and multi-core?
= “Embarrassingly parallel” programs
MAP-REDUCE, divide and conquer
can be d P

d into independent chunks

= Processing tasks that don’t require shared memory
Web services where each user has separate state
= Parallel algorithms and code

Programs that process a large volume of data, but where processing

Chunks can be processed in parallel without coordination

Requires coordination, but is manageable through known sharing and
= What does synchronlzatlon with processes and threads mean?
= Synchronization: coordinating access to shared memory
= Applies to threads, as processes do not have shared memory

April 6, 2021 TCS$4|22; Operating Systems [Spring 2021]

School o chnology, ity

- Tacoma

‘ 137 ‘

FEEDBACK - 2

= I[mplementation of the PIDs and threads Is not yet clear
= Chapter 4 introduces processes, threads will follow

= What are the advantages of using the Linux /proc
fllesystem?
= Provides ability to inspect low-level details of how
processes/threads are running (e.g. if you wanted to write
you own top/htop utility)
= Provides ability to inspect resource utilization and
management being provided by the operating system

TCS5422: Operating Systems [Spring 2021]

Qruleiz028 School of Engineering and Technology, University of Washington - Tacoma

‘ 138

FEEDBACK - 3

= | feel like we went over the running of these programs a little
fast, | am not sure If | could get these programs to run In a
termlinal as lots of commands were belng used on the screen.

Source Code Examples

Source code for examples from class are posted [HERE].

= Can we get the today's lecture sample codes for reviewing?
= Code examples from class are linked from the schedule page:

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/

pictures were overlapped.

= Can we get [ecture slides Instead pdf? Some sample code

= This has been corrected. Slides have been reposted. Thank you !

April 6, 2021 TCS$4|22; Operating Systems [Spring 2021]

school o chnology, ity

- Tacoma

‘ 39 ‘

MOTIVATION FOR LINUX

= |t is worth noting the importance of Linux for today’s
developers and computer scientists.

= The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

= Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

= https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server,

= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions

= The majority of application back-ends (server-side), cloud or
not, run on Linux.

= This is due to licensing costs, example:

TCS5422: Operating Systems [Spring 2021]

April 6, 2021 School of Technology, University of

13.10

- Tacoma

MOTIVATION FOR LINUX - 2

= Consider an example where you’re asked to develop

= 8-core VM is “c5d.2xlarge”

services backend that requires 10 x 8-CPU-core virtual servers
= Your organization investigates hosting costs on Amazon cloud

a web

Name Instance type | Memory VCPUs Linux On Demand cost | Windows On Demand cost

C5 High-CPU Extra Large cSd.xlarge | BOGIEB | 4 vCPU: '50.192000 hourly 50376000 hourly
Ce -CPU 18xlarge £5d.18xlarge [144.0 GiB | 72 vCPUS $3.456000 hourly $6.768000 hourly
Ct -CPU Large c5d.large 4.0GIB VCPUE $0.096000 hourly £0.188000 hourly

-CPU 24xlaige 5d.24xlarge | 192.0 GiB vCPUs '$4.608000 hourly '$9.024000 hourly

-CPU Quadruple Extra Large £5d 4xlarge 32.0GB $0.768000 hourly $1.504000 hourly

e

|C5 High-CPU Double Extra Large ¢5d.2xlart 16.0 GIB $0.384000 hours $0.752000 hourf]
[C5 High-CPU Sxiarge C5d.oxlarge | 72.0 GIB, VCPUS $1.728000 hourly $3.384000 hourly

= Windows hourly price 75.2¢
= Linux hourly price 38.4¢

= See: https://www.ec2instances.info/

April 6, 2021 ‘ Tc5542§: Operating Systems [Spring 2021]

school of chnology, ity - Tacoma

MOTIVATION FOR LINUX - 2

Linux

10 VMs x 8,760 hours x $.384 = $33,638.40 _

Windows comes at a 95.8% price premium
= See: https://www.ec2instances.info/

‘ [EXT ‘

TCS5422: Operating Systems [Spring 2021]

April 6, 2021 School of Technology, University of

B2 ‘

- Tacoma

Slides by Wes J. Lloyd

4/6/2021

L3.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/6

= Questions from 4/1

| = C Revlew Survey - Closes Friday Apr 9 |

= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

= Virtual Machine Survey: VM requests sent to S. Rondeau

TCS5422: Operating Systems [Spring 2021]

EIIE e o T B s oy Tty A T = TRy

313

OBJECTIVES - 4/6

= Questions from 4/1
= C Review Survey - Closes Friday Apr 9
| = Student Background Survey |
= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2021]

Qruleiz028 School of Engineering and Technology, University of Washington - Tacoma

1314

STUDENT BACKGROUND SURVEY

= Please complete the Student Background Survey

=https://forms.gle/yr6Dc9x9rX516U6t6

TCS5422: Operating Systems [Spring 2021]

EIE e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

315

OBJECTIVES - 4/6

= Questions from 4/1
= C Review Survey - Closes Friday Apr 9
= Student Background Survey
| = Virtual Machine Survey: VM requests sent to S. Rondeau |
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2021]

Qeuleiz028 School of Engineering and Technology, University of Washington - Tacoma

13.16

OBJECTIVES - 4/6

= Questions from 4/1
= C Review Survey - Closes Friday Apr 9
= Student Background Survey

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

= Virtual Machine Survey: VM requests sent to S. Rondeau

TCS5422: Operating Systems [Spring 2021]

EAIE e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

317

Slides by Wes J. Lloyd

OBJECTIVES - 4/6

= Questions from 4/1

= C Review Survey - Closes Friday Apr 9

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

| = Chapter 4: Processesl

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2021]

LG, School of Engineering and Technology, University of Washington - Tacoma

13.18

4/6/2021

L3.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

Process State

oo aimted ot @@

“scheduler cispatch
o

or or
ent completion W eventvat
event completor @ event wa

g /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

April 6, 2021

VIRTUALIZING THE CPU

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

= The act of swapping process A out of the CPU to run
process B is called a:
= CONTEXT SWITCH

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

= OVERHEAD is time spent performing 0S management
activities that don’t help accomplish real work

April 6, 2021 13.20

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

PROCESS

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

April 6, 2021 1321

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

PROCESS API

= Modern OSes provide a Process API for process support
= Create
= Create a new process
= Destroy
= Terminate a process (ctrl-c)
= Wait
= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma .22

April 6, 2021

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loadIng: Load entire program before running

= Lazy loadIng: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

April 6, 2021 TCS$4|22; Operating Systems [Spring 2021]

School of Technology, ity i Tacoma 1323

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= |/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma 13.24

April 6, 2021

Slides by Wes J. Lloyd

4/6/2021

L3.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

CPU Memory
static data !
: heap :
| stack
Process
I I
— T —
C)
Loading:
N f."dde(! Reads program from
¢ ahléapa a disk into the address

L Fogam space of process
.

TCSS422: Operating Systems [Spring 2021]

Ll G School of Engineering and Technology, University of Washington - Tacoma

13.25

OBJECTIVES - 4/6

= Questions from 4/1

= C Review Survey - Closes Friday Apr 9

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes
|- Process states, context swltchesl
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

April 6, 2021 TCS$422: Operating Systems [Spring 2021] ‘ 1326

School of Engineering and Technology, University of Washington - Tacoma

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

= Process is not ready to run. It is waiting for another event

to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCS5422: Operating Systems [Spring 2021]

EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 1327

PROCESS STATE TRANSITIONS

\ Descheduled \
Runni | ——> Ready |
/ Scheduled \ /

' / /
1/0: initiale\‘ //O: done
> N

)

/

| Blocked

\ /

AN

~

TCS$422: Operating Systems [Spring 2021] ‘ 13.28 ‘

Qeuleiz028 School of Engineering and Technology, University of Washington - Tacoma

OBSERVING PROCESS META-DATA

CONTEXT SWITCH

= Can inspect the number of CONTEXT SWITCHES made by a
process
= Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

Speculation_Store_Bypass: thread vulnerable
cpus_allowed: T

list: 0-7
00060006, 60000061
er—t

1370
18

= proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

= What appears to happen to the number of context switches

the longer a process runs? (mem.c)

TCS5422: Operating Systems [Spring 2021]

EAIE e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

‘ 329

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
= 2 000 context switches is near 100ms

Without CPU affinity

Cost of context swiching on a dual Inte 5150

50000 . 2 3 8 : 0

o &

g

w 3

H

w i

w £

Context swikch 0

w00 | wesm],
0w m w e % w m m w m

Workng setize (3)
TCSS422: Operating Systems [Spring 2021] ‘ 30 ‘

LG, School of Engineering and Technology, University of Washington - Tacoma

4/6/2021

Slides by Wes J. Lloyd

L3.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

When a process is in this state, it is
-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED Allofthe None of
above theabove

] April 6, 2021 TCSS422: Operating Systems [Spring 2021
o R45: L3 3-.

QUESTION: WHEN TO CONTEXT SWITCH

= When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

April 6, 2020 TCS$422: Operating Systems [Spring 2021]
pril 6, School of Engineering and Technology, University of Washington - Tacoma

1332

4/6/2021

OBJECTIVES - 4/6

= Questions from 4/1

= C Review Survey - Closes Friday Apr 9

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau

= Assignment O

= Chapter 4: Processes
= Process states, context switches
|- Kernel data structures for processes and threads |
= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 6, 2021 1333

PROCESS DATA STRUCTURES

= OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

TCS5422: Operating Systems [Spring 2021]

Qeuleiz028 School of Engineering and Technology, University of Washington - Tacoma =

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

p and suk len restart a pr

struct context {
eip; Ind.
esp;
t ebx;
nt ecx;
nt edx;
esi;
edi; D nat jex
ebp; .ck base poin x er

B pe b b b e b

bi

he different states a process can be i
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCS5422: Operating Systems [Spring 2021]

EAIE Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms 1333

XV6 KERNEL DATA STRUCTURES - 2

struct proc {

char *mem; ar mor
1int sz; ize of ory

char *kstack; B e k

enum proc_state state; >
int pid; Process ID
struct proc *parent; Parent proc
void *chan; 1on

int killed; 1on-z
struct file *ofile[NOFILE];
struct inode *cwd;

E context context;
struct trapframe *tf;

TCS5422: Operating Systems [Spring 2021]

REllE2E2E School of Engineering and Technology, University of Washington - Tacoma 136

Slides by Wes J. Lloyd

L3.6

TCSS 422 A — Spring 2021 4/6/2021
School of Engineering and Technology

LINUX: STRUCTURES

LINUX: THREAD_INFO

" struct task struct, equivalent to struct proc S Eaare A (
i struct task_struct *task; /* main task structure */
" The Linux process data structure struct exec_domain *exec_domain; /* execution domain */
= VERY LARGE: 10,000+ bytes __u32 flags; /* low level flags */
" i " f 32 tatus; * thread synch: flags *
= /usr/src/linux-headers-{kernel version}/include/linux/sched.h ::32 ;,:,.“ ;* c.,ﬁi:nt’gu f;m“ oD Y
= ~ LOC 1391 - 1852 (4.4.0-170) int e i BECy,
L . B <0 => BUG *,
= task_struct originally stored in the kernel’s stack space mm_segment_t addr_limit;
- Limited to 2 x 4KB pages = 8 KB struct restart block restart block;
)) void _ user *sysenter_return;
* task_struct is LARGE, has been moved outside the kernel stack #ifdef CONFIG_X86_32 -
* The smaller thread_info struct is now stored on the kernel’s stack CELERCE) TERE) ROy ij:’e":ft::sz::"ig:;)5:::‘;]:"
& provides a ptr to task_struct allocated using the slab allocator
= Slab allocator allocates memory for common data structures in Linux et =5 CepCACER CEE,
. . int uaccess_err;
=" struct thread info, provides ptr to task_struct i
= thread_info.h is at:
/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/
TCSS422: Operating Systems [Spring 2021] TCSS422: Operating Systems [Spring 2021]
EIIE e e Ty o s oy Uty f T ‘ 1337 ‘ Bl 2 e T T T T g ey f T ‘ 1338 ‘

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
e T WE WILL RETURN AT
S T 5:00PM
Safari online - accessible using UW ID SSO login

Linux Kernel Development, 3" edition

Robert Love
Addison-Wesley

TC55422: Operating Systems [Spring 2021] i TCS8422: Operating Systems [Spring 2021]
CoIGETR School of Engineering and Technology, University ington - Tacoma 839 edieanzt School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/6

= Questions from 4/1

= C Review Survey - Closes Friday Apr 9

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau

= Assignment O CHAPTER 5:
= Chapter 4: Processes C PROCESS API

= Process states, context switches
= Kernel data structures for processes and threads

|IChagter Process API |

= fork(), wait(), exec()

School of Technology, y i - Tacoma School of Engineering and Technology, University of Washington -

‘ April 6, 2021 ‘ TCSSAfZ;OPE_rating Systems [Spring 2021] ‘ a1 ‘ April 6, 2021 TCSS422: Operating Systems [Spring 2021]

Slides by Wes J. Lloyd L3.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/6

= Questions from 4/1
= C Review Survey - Closes Friday Apr 9
= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

= Virtual Machine Survey: VM requests sent to S. Rondeau

‘ April 6, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 343 ‘

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon polint
= Book says “pretty odd”
= Creates a dupllcate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

April6,2021 TCS5422: Operating Systems [Spring 2021]

4
School of Engineering and Technology, University of Washington - Tacoma ‘ 1344 ‘

FORK EXAMPLE

int main(int arge, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());

q int re = fork();

(xrc < 0) {
fprintf (stderr, "fork failed\n");
exit (1);

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

07

(rc 0 { (
printf("hello, I am child (pid:%d)\n", (int) getpid());:
{

TCS5422: Operating Systems [Spring 2021]
EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 1345 ‘

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

= CPU scheduler determines which to run first

April6,2021 TCS5422: Operating Systems [Spring 2021]

”
School of Engineering and Technology, University of Washington - Tacoma ‘ 1346 ‘

P SN e S

TCSS422: Operating Systems [Spring 2021]

April 6, 2021 School of Engineering and Technology, University of Washington - Tacoma

2R

OBJECTIVES - 4/6

= Questions from 4/1

= C Review Survey - Closes Friday Apr 9

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork() exec()

TCS5422: Operating Systems [Spring 2021]

LG, School of Engineering and Technology, University of Washington - Tacoma

B3

Slides by Wes J. Lloyd

4/6/2021

L3.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing
= Not a sleep() function

= Provides some ordering to multi-process execution

April 6, 2021 TCS$422: Operating Systems [Spring 2021]
il School of Engineering and Technology, University of Washington - Tacoma

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <sys/wait.h>

int main(int arge, char *argv(l){
printf("hello world (pid:%d)\n", (int) getpid());
nt re = fork();
(re < 0) { Y ;
fprintf (stderr, "fork failed\n");
exit(1);
) (rc == 0) {
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
q int we = wait (NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
re, we, (int) getpid());

0;

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2021]
EIE e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 1351 ‘

TC55422: Operating Systems [Spring 2021]
Bl 2 o T T T o e A S T = e 1350
® Linux example
AprilG, 2021 TCSS422: Operating Systems [Spring 2021] ‘ sz ‘

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/6

= Questions from 4/1
= C Review Survey - Closes Friday Apr 9
= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(),fexec()]

= Virtual Machine Survey: VM requests sent to S. Rondeau

April 6, 2021 TCSS422: Operating Systems [Spring 2021]
Pril 6, School of Engineering and Technology, University of Washington - Tacoma

‘ 353 ‘

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argi, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April6,2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1354 ‘

Slides by Wes J. Lloyd

4/6/2021

L3.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Common
= Write a n

= Legacy p

= We don’t

EXEC() - 2

use case:
ew program which wraps a legacy one

= Provide a new interface to an old system: Web services

rogram thought of as a “black box”

want to know what is inside... ®

Ouput
ot —— [T

internatbehovior of the code is unknorn

April 6, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 1355 ‘

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <sys/wait.h>

int main(int arge, char *argv(l){
printf("hello world (pid:%d)\n", (int) getpid());
nt re = fork();
(xc < 0) { ;
fprintf (stderr, "fork failed\n");
exit (1);

- 0) (
printf("hello, T am child (pid:%d)\n", (int) getpid());

‘ char *myargs[3];
myargs[0] = strdup("we"); s et

}

myargs[1] = strdup("p3.c");
myargs([2] = NULL;
April 6, 2021 TCS$422: Operating Systems [Spring 2021] ‘ 1356 ‘

School of Engineering and Technology, University of Washington - Tacoma

EXEC EXAMPLE - 2

execvp (myargs (0], myargs);

printf("this shouldn’t print out");
{

nt we = wait (NULL);

printf("hello, I am parent of %d (wc:d) (pid:%d)\n",
re, we, (int) getpid();

07

prompt>
W

4

prompt>

./p3

orld (pid:29383)

I am child (pid:29384)

1030 p3.c

I am parent of 29384 (wc:29384) (pid:29383)

April 6, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 357 ‘

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <fentl.h>
finclude <sys/wait.h>
main (int arge, char *argv(]){
int re = fork();
(rc < 0) y
fprintf (stderr, "fork failed\n");
exit(1);
} (rc == 0)
close (STDOUT_FILENO) ;
‘ open ("./pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

April6,2021 ‘ TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1358 ‘

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

April 6, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ 1359 ‘

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

har *myargs(3];

myargs[0] = strdup ("wc");
myargs(1] = strdup("p4.c");
myargs([2] = NULL;

execvp (myargs (0], myargs);

int we = wait (NULL);

prompt> ./pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Spring 2021]

LG, School of Engineering and Technology, University of Washington - Tacoma

‘ 13.60 ‘

Slides by Wes J. Lloyd

4/6/2021

L3.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

Which Process API call is used to launch a

different program from the current program?

the

Fork() Exec() Wait() None of

above

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

April 6, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University

1362

QUESTIONS

Slides by Wes J. Lloyd

4/6/2021

L3.11

