

WHY ABSTRACTION?

Allow applications to reuse common facilities

Make different devices look the same

Easier to write common code to use devices

Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

OBJECTIVES - 4/1

Questions from 3/30
C Review Survey
Student Background Survey
Virtual Machine Survey
Chapter 2: Operating Systems - Three Easy Pieces
Concepts of virtualization/abstraction
Three Easy Pieces: CPU Memory, I/O
Concurrency
Operating system design goals
Chapter 4: Processes
Process states, context switches
Kernel data structures for processes and threads

April 1, 2021

TCSS42: Operating Systems (Spring 2021)
School of Engineering and Technology, University of Washington - Tacoma


```
OBJECTIVES - 4/1

Questions from 3/30
C Review Survey
Student Background Survey
Virtual Machine Survey
Chapter 2: Operating Systems - Three Easy Pieces
Concepts of virtualization/abstraction
Three Easy Pieces: CPU Memory
Operating system design goals
Chapter 4: Processes
Process states, context switches
Kernel data structures for processes and threads

April 1, 2021

TCSS42: Operating Systems (Spring 2021)
School of Engineering and Technology, University of Washington - Tacoma
```



```
VIRTUALIZING MEMORY - 3

Output of mem.c

prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 2
(2134) p: 3
(2134) p: 3
(2134) p: 5
c

int value stored at 00200000
program increments int value

TCSS422: Operating Systems (Spring 2021)
School of Engineering and Technology, University of Washington - Tacoma
```

| William | Will


```
PERSISTENCE - 3

To write to disk, OS must:
Determine where on disk data should reside
Perform sys calls to perform I/O:
Read/write to file system (Inode record)
Read/write data to file

Provide fault tolerance for system crashes
Journaling: Record disk operations in a journal for replay
Copy-on-write - replicating shared data - see ZFS
Carefully order writes on disk
```



```
CONCURRENCY

Linux: 654 tasks
Windows: 37 processes
The OS appears to run many programs at once, juggling them
Modern multi-threaded programs feature concurrent threads and processes
What is a key difference between a process and a thread?

April 1,2021
TCSS42: Operating Systems (Spring 2021)
School of Engineering and Technology, University of Washington - Tacoma
```



```
PROCESS DATA STRUCTURES

OS provides data structures to track process information
Process list
Process Data
State of process: Ready, Blocked, Running
Register context

PCB (Process Control Block)
A C-structure that contains information about each process
```


