

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.5

Operating

Systems
Three Easy Pieces:

TCSS 422 - Spring 2021

- Online is green...
 - 100% reduction of carbon footprint from transit
- Saves commuting time
 - Less fuel expenses
- Easier to achieve perfect attendance
 - all lectures streamed LIVE, recorded for 24/7 availability
- 20 class meetings
 - 1 Monday holiday in Spring: May 31
- Final exam Thursday June 10th

TCSS 422 SPRING 2021

SILVER LINING FOR ONLINE LEARNING

- ONLINE LEARNING: practice use of technology for remote collaborative work
- Professor conducted Masters thesis research at VA Tech on distributed remote work in early 2000s
- Computer Science is a unique field where you can work in a job entirely remotely from home or from any location
- Colleague from undergrad, Scott Teresi, MS in CS from Univ of Illinois – works for British company remotely for over a decade
 - Well paid!
 - Never physically met boss until company was recently bought
 - Before covid now making occasional trips to the UK

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.7

RESOURCES FOR SPRING 2021

- Low Cost or Free Technology Services from UW Tacoma:
- https://www.tacoma.uw.edu/about-uw-tacoma/low-cost-or-free-technology-services
- Resources for students during the Coronavirus pandemic:
- https://www.tacoma.uw.edu/chancellor/resources-studentsduring-coronavirus-pandemic https://www.tacoma.uw.edu/uwt/it/it-resources-telework-andattending-class-remotely
- UW Tacoma Information Technology & Library Laptops for loan:
- https://itconnect.uw.edu/work/working-remotely/technologyfor-working-remotely/acquiring-computers-and-hardware-forworking-remotely/
- https://www.tacoma.uw.edu/learning-researchcommons/laptops-available-checkout

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

RESOURCES - 2

- Textbook coupon 10% off "WRITER10" until Friday at 11:59pm
- http://www.lulu.com/shop/remzi-arpaci-dusseau-and-andreaarpaci-dusseau/operating-systems-three-easy-piecessoftcover-version-100/paperback/product-23779877.html

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.9

TCSS422 - SPRING 2021 **COMPUTER OPERATING SYSTEMS**

- Syllabus
- Grading
- Schedule
- Assignments

See website at:

http://faculty.washington.edu/wlloyd/courses/tcss422

Enables access using mobile device w/o logging into Canvas

Website also integrated into Canvas

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

TCS422 COURSE WORK

- Assignments (45%)
 - 4 Assignments: roughly every two weeks
 - Submit ALL programming assignments via Canvas no email
 - Email submissions are prone to be lost
- Tutorials/Quizzes/In-class activities (15%)
 - ~ 5-6 quizzes
 - Drop lowest two
 - Variety of formats: collaborative in class (via Zoom breakout rooms), online, reading, tutorial
- Exams: Midterm and Final (40%)
 - Online via the Canvas system
 - Final exam is comprehensive, with emphasis on new material

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS 422: PROGRAMS

- Tentative subject to change
- Assignment 0: Introduction to Linux, Ubuntu Virtual Machine
- Assignment 1: Programming with multiple processes (in C)
- Assignment 2: Multithreaded programming and concurrency (C or Java)
- Assignment 3: Kernel (real) mode programming (in C)

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma March 30, 2021

L1.13

TCSS 422: PROGRAM DUE DATES

- Programs please start early
 - Work as if deadline is several days earlier
 - •Allows for a "buffer" for running into unexpected problems
 - Underestimation of the task at hand
 - Allows time to seek C help from CSS lab mentors (checking on availability for Spring 2021)
 - If less familiar with C/pointers (TCSS 333/380), **BUDGET MORE TIME**

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

UBUNTU 20.04 - VIRTUAL MACHINE

- Ubuntu 20.04
 - Open source version of Debian-package based Linux
 - Package management: "apt get" repositories
 - See: https://packages.ubuntu.com/
- Ubuntu Advantages
 - Enterprise Linux Distribution
 - Free, widely used by developers
 - Long term releases (LTS) every 2 years, good for servers
 - 6 month feature releases, good for sharing new features with the community

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.15

UBUNTU 20.04 - VIRTUAL MACHINE INSTALLATION

- Ubuntu 20.04 on Oracle VirtualBox
- HOW-TO installation videos:
- Windows 10
- https://youtu.be/x3Zpe1rIPFE
- Mac OS X
- https://youtu.be/Hzji7w8820Y
- > AFTER VirtualBox, INSTALL THE Guest Additions
 - IMPORTANT USABILITY ADD-ON: Provides file system sharing, clipboard integration, mouse tricks
- https://youtu.be/Kbez-XdXqrw

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

C PROGRAMING IN TCSS 422

- Many OSes are coded primarily in C and Assembly Language
- C is a particularly useful language for working with hardware / hardware drivers and operating systems
- C allows writing programs that can directly access the computer's physical memory (in kernel/real mode) providing nearly the power and speed of assembly language
 - But in a much easier to write high-level language
- Ideally, all university operating system courses are taught in C/C++. Our textbook is in C/C++
 - This quarter we will offer the option of assignment of completing assignment 2 in Java (multithreaded programming)

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.17

C MENTORING

- https://www.tacoma.uw.edu/institute-technology/studentsupport-workshops-mentors
- School of Engineering and Technology Mentors
- Office hours held online via Zoom
- Varied hours and availability based on mentors schedules
- Monday Thursday: ~9:30 am 9:00 pm
- Friday: ~ 9:30 3:30 pm
- Spring quarter hours will be posted once available
- Student mentors managed by SET Monika Sobolewska

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

INSTRUCTOR HELP

- Office hours: tentative 5:40p TR after class
 - Additional hours based on survey results
 - Also available by appointment
- Take <u>ownership</u> of your educational outcome
 - 10 weeks spent in TCSS 422 is very small relative to entire IT career
 - Make the most of this <u>limited</u> opportunity
 - Maximize your educational investment
 - *** Ask questions in class on zoom !! ***
 - Also questions after class, email, Canvas discussion boards
 - Seek help using UWT resources, the internet, YouTube videos (video.google.com) and online tutorials

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.19

CLASS PARTICIPATION

- Questions and discussion are strongly encouraged
 - Leverage your educational investment
 - All questions are encouraged!
 - This instructor appreciates questions at all levels
 - there is no judgement for any question
- Daily feedback surveys
 - How much is new vs. review?
 - Checking the pace...
 - What is unclear? It's helpful to know when topics are not clear
 - Use the survey to write questions and feedback that come to you during the lecture
- Poll-EV

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

VIRTUAL MACHINE SURVEY

- Please complete the Virtual Machine Survey to request a "School of Engineering and Technology" remote hosted Ubuntu VM
- https://forms.gle/BR2G1wr9RDBVB9AK8

March 30, 2021

TCSS422: Operating Systems [Spring 2021] School of Engineering and Technology, University of Washington - Tacoma

L2.27

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

OPERATING SYSTEMS

- Responsible for:
 - Making it easy to run programs
 - •Allowing programs to share memory
 - Enabling programs to interact with devices

OS is in charge of making sure the system operates correctly and efficiently.

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.31

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

RESOURCE MANAGEMENT

- The OS is a resource manager
- Manages CPU, disk, network I/O
- Enables many programs to
 - Share the CPU
 - Share the underlying physical memory (RAM)
 - Share physical devices
 - Disks
 - Network Devices

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.33

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

VIRTUALIZATION

- Operating systems present physical resources as virtual representations to the programs sharing them
 - Physical resources: CPU, disk, memory, ...
 - The virtual form is "abstract"
 - The OS presents an illusion that each user program runs in isolation on its own hardware
 - This virtual form is general, powerful, and easy-to-use

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.35

ABSTRACTIONS

- What form of abstraction does the OS provide?
 - CPU
 - Process and/or thread
 - Memory
 - Address space
 - → large array of bytes
 - All programs see the same "size" of RAM
 - Disk
 - Files

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

WHY ABSTRACTION?

- Allow applications to reuse common facilities
- Make different devices look the same
 - Easier to write common code to use devices
 - Linux/Unix Block Devices
- Provide higher level abstractions
- More useful functionality

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.37

ABSTRACTION CHALLENGES

- What level of abstraction?
 - How much of the underlying hardware should be exposed?
 - What if too much?
 - What if too little?
- What are the correct abstractions?
 - Security concerns

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

VIRTUALIZING MEMORY

- Computer memory is treated as a large array of bytes
- Programs store all data in this large array
 - Read memory (load)
 - Specify an address to read data from
 - Write memory (store)
 - Specify data to write to an address

March 30, 2021

TCSS422: Operating Systems [Spring 2021] School of Engineering and Technology, University of Washington - Tacoma

L1.45

L1.46

VIRTUALIZING MEMORY - 2

Program to read/write memory:

```
#include <unistd.h>
         #include <stdio.h>
         #include <stdlib.h>
#include "common.h"
         main(int argc, char *argv[])
                  int *p = malloc(sizeof(int)); // a1: allocate some
                  assert(p != NULL);
printf("(%d) address of p: %08x\n",
1.0
11
                           getpid(), (unsigned) p); // a2: print out the
12
                                               address of the memmory
                   *p = 0; // a3: put zero into the first slot of the memory
13
                  while (1) {
14
                            Spin(1);
15
16
                            *p = *p + 1;
                            printf("(%d) p: %d\n", getpid(), *p); // a4
17
18
                   return 0;
19
```

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

VIRTUALIZING MEMORY - 3

Output of mem.c

```
prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
```

- int value stored at 00200000
- program increments int value

March 30, 2021

TCSS422: Operating Systems [Spring 2021] School of Engineering and Technology, University of Washington - Tacoma

L1.47

VIRTUALIZING MEMORY - 4

Multiple instances of mem.c

```
prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
```

- (int*)p receives the same memory location 00200000
- Why does modifying (int*)p in program #1 (PID=24113), not interfere with (int*)p in program #2 (PID=24114)?
 - The OS has "virtualized" memory, and provides a "virtual" address

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

VIRTUAL MEMORY

- Key take-aways:
- Each process (program) has its own virtual address space
- The OS maps virtual address spaces onto physical memory
- A memory reference from one process can not affect the address space of others.
 - > Isolation
- Physical memory, a <u>shared resource</u>, is managed by the OS

March 30, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.50

PERSISTENCE

- DRAM: Dynamic Random Access Memory: DIMMs/SIMMs
 - Stores data while power is present
 - When power is lost, data is lost (volatile)
- Operating System helps "persist" data more <u>permanently</u>
 - I/O device(s): hard disk drive (HDD), solid state drive (SSD)
 - File system(s): "catalog" data for storage and retrieval

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

PERSISTENCE - 2

```
#include <stdio.h>
        #include <unistd.h>
        #include <assert.h>
        #include <fcntl.h>
        #include <sys/types.h>
6
8
        main(int argc, char *argv[])
10
                int fd = open("/tmp/file", O WRONLY | O CREAT
                             | O_TRUNC, S_IRWXU);
                assert (fd > -1);
11
                int rc = write(fd, "hello world\n", 13);
13
                assert(rc == 13);
                close(fd);
                return 0;
```

- open(), write(), close(): OS system calls for device I/O
- Note: man page for open(), write() require page number: "man 2 open", "man 2 write", "man close"

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L2.52

PERSISTENCE - 3

- To write to disk, OS must:
 - Determine where on disk data should reside
 - Perform sys calls to perform I/O:
 - Read/write to file system (inode record)
 - Read/write data to file
- Provide fault tolerance for system crashes
 - Journaling: Record disk operations in a journal for replay
 - Copy-on-write replicating shared data see ZFS
 - Carefully order writes on disk

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma


```
CONCURRENCY - 3
        17
                  main(int argc, char *argv[])
        18
        19
                            if (argc != 2) {
        20
                                    fprintf(stderr, "usage: threads <value>\n");
        21
                                     exit(1);
        22
        2.3
                           loops = atoi(argv[1]);
        24
                           pthread_t p1, p2;
                           printf("Initial value : %d\n", counter);
        25
        26
        27
                           Pthread_create(&p1, NULL, worker, NULL);
                           Pthread_create(&p2, NULL, worker, NULL);
Pthread_join(p1, NULL);
Pthread_join(p2, NULL);
printf("Final value: %d\n", counter);
        2.8
        29
        30
        31
                           return 0;
Program creates two threads
Check documentation: "man pthread_create"
worker() method counts from 0 to argv[1] (loop)
                        TCSS422: Operating Systems [Spring 2021]
    March 30, 2021
                                                                                         L1.58
                        School of Engineering and Technology, University of Washington - Tacoma
```


PARALLEL PROGRAMMING

- To perform parallel work, a single process may:
- A. Launch multiple threads to execute code in parallel while sharing global data in memory
- B. Launch multiple processes to execute code in parallel without sharing global data in memory
- C. Both A and B
- D. None of the above

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.63

OBJECTIVES - 3/30

- Syllabus, Course Introduction
- C Review Survey
- Background Survey
- Chapter 4: Operating Systems Three Easy Pieces
 - Introduction to operating systems
 - Management of resources
 - Concepts of virtualization/abstraction
 - Three Easy Pieces: CPU, Memory, I/O
 - Concurrency
 - Operating system design goals

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

SUMMARY: OPERATING SYSTEM DESIGN GOALS

ABSTRACTING THE HARDWARE

- Makes programming code easier to write
- Automate sharing resources save programmer burden

PROVIDE HIGH PERFORMANCE

- Minimize overhead from OS abstraction (Virtualization of CPU, RAM, I/O)
- Share resources fairly
- Attempt to tradeoff performance vs. fairness → consider priority

PROVIDE ISOLATION

 User programs can't interfere with each other's virtual machines, the underlying OS, or the sharing of resources

March 30, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

SUMMARY: OPERATING SYSTEM DESIGN GOALS - 2

RELIABILITY

- OS must not crash, 24/7 Up-time
- Poor user programs must not bring down the system:

Blue Screen

Other Issues:

- Energy-efficiency
- Security (of data)
- Cloud: Virtual Machines

March 30, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L2.66

