TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

June 1, 2021 TCSS422: Operating Systems [Spring 2021]
iz school of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 6/1

| = Questlons from 5/27 |
= REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

June 1, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Ls2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021
Home

Announcements

- + Upcoming Assignments
Sylbhis < TCSS 422 - Online Daily Feedback Survey - 4/1
: "V Available unti) Apr 3 3£ 11:5%m | Due Apr 3 at10pm | 71 pts
Dicriiccinne o Y Py
Pp— TC55422; Computer Operating Systems [spring 2021] 83
School of Technology, y Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05pts

Onascale of 1to 10, p

ify your perspecti in today's

class:

1 2 3 a4 s 6 7 8 9 10

Wosely Hostly
Review To e New and Review Hew to He
Question 2 05pts
Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 10

TCSS422: Computer Operating Systems [Spring 2021]
i i 1P School of Engineering and Technology, University of Washington - Tacoma L184

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (51 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.02 (- previous 6.35)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.52 (1 - previous 5.47)

u8s

June 1, 2021 TCSSAZZ; Computer Operating Systems [Spring 2021]

Tacoma

FEEDBACK

= |s It Important to try to Increase the hit-to-miss ratio for
the TLB when writing a program In C?

= |n our program, one thing we can control is how memory
is accessed in arrays or other structures, etc.

= To optimize performance of our programs, we can design
our code with the TLB in mind by increasing spatial and
temporal locality of memory accesses

= In some cases specific algorithms require certain memory
access patterns. These will be difficult to optimize

June 1, 2021 TCS5422: Operating Systems (Spring 2021])
School of Technology, University of - Tacoma

186

Slides by Wes J. Lloyd

6/1/2021

L18.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

FEEDBACK - 2

= Could you review how we find hits and misses from TLB
example? (lecture 17 2up pg19)

= We will start today by reviewing the TLB (chapter 19)

TCS5422: Operating Systems [Spring 2021]

duzail, 2L e o T B s oy Tty A T = TRy

187

OBJECTIVES - 6/1

= Questions from 5/27
I = Asslgnment 2 - May 31 (Late Penalty June 2, Closing June 4) I
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

June 1, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lss

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)

|- Tutorial 2 - Pthread, locks, conditions tutorial - June 4

= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2021]

duzaih, el e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

1189

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
|- Assignment 3: (Tutorial) Introduction to Linux Kernel Modules |
® Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

June 1, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma us0

ASSIGNMENT 3:
INTRODUCTION TO LINUX KERNEL MODULES

= Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures

= For example: Linux task_struct process data structure

= Assignment 3 is scored in the Quizzes / Activities /
Tutorials category

= Lowest two grades in this category are dropped

TCS5422: Operating Systems [Spring 2021]

iz, el e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

1811

Slides by Wes J. Lloyd

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
|I Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

June 1, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma us.2

6/1/2021

L18.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

ALTERNATE FINAL EXAM

= Final Exam category will have two assignments

= Thursday June 10 from 3:40 to 5:40 pm
= Final Quiz (50 points)
= SHORT: fewer than half the number of questions as the midterm
= 1-hour
= Focus on new content - since the midterm

= Tutorial: Linux File Systems and Disk I/0
= Available for 1-week ~June 5" to June 11"
= 50 points
= Presents new material in a hands-on, interactive format
= Complete activity and answer questions
= Individual work

June 1, 2021 118.13

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
|IQuIz4 - Page Tables |
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

1814

TCSS422: Operating Systems [Spring 2021]
Heia e e BT T o Uy i = e

OBJECTIVES - 6/1

= Questions from 5/27

= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format

= Quiz 4 - Page Tables

= Chapter 19: Translation Lookaside Buffer (TLB)

" Hit-to-MIss Ratlos |

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2021]
duzaih, el e oolol Enginearins erdiechnolonyiUnve ity S = TR

118.15

I

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2021]

LT School of Engineering and Technology, University of Washington -

TLB EXAMPLE - 2

0 int sum = 0 ; OFFSET.
w o o 1
1 for(i=0; i<10; i++){ veN'= 00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
. ven - o4
= Consider the code above: VT
.) VPN = 06 a0 | a1l | al2]
= Initially the TLB does not know where a[] is ven =07 [ag) | a1 | as) | ato)
= Consider the accesses: - o [
veN =09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9] ven =11
= How many pages are accessed? e
ven =13
= What happens when accessing a page not VPN - 14
in the TLB? VPN =15
June 1, 2021 TCSS422: Operating Systems [Spring 2021] 817
o 0ol of Engineerir chnology, University i Tacoma -

TLB EXAMPLE - 3

0: int sum = 0 ; OFFSET
w o o 1
1: for(i=0; i<10; i++){ VN 00
2: sum+=a[i]; VPN = 01
3: } VPN = 03
ven - 08
= For the accesses: a[0], a[1], a[2], a[3], a[4], =
VN - 06 o1 | o | e
= a[5], a[6], a[7], a[8], a[9] veN =07 o) | aie) | ats) | atel
VPN - 08 | a7 | ai8) | aio)
ven <09
= How many are hits? VeN - 10
= How many are misses? e
w12
= What is the hit rate? (%) T
= 70% (3 misses one for each VP, 7 hits) VPN = 14
e =15
TCSS422: Operating Systems [Spring 2021]
Cmaf, School of Engineering and Technology, University of Washington - Tacoma Le18

Slides by

Wes J. Lloyd

6/1/2021

L18.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
w0 o o 1
1: for(i=0; i<10; i++){ VPN = 00
2: sum+=a[i]; VPN = 01
i3 i VPN = 03
VN = 0t
. . ven <05
= What factors affect the hit/miss rate? 05 T
= Page size VPN =07 | o | ae) | als) | al6]
. VPN - 08 | a7 | a8 | amo)
= Data/Access locality (how is data accessed?) TRy

= Sequential array access vs. random array access V-1

- ven- 11
= Temporal locality w12

=Size of the TLB cache ven =13

(how much history can you store?) Sl

VPN =15

June 1, 2021

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri inology, University i Tacoma

118.19

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

118.20

June 1, 2021 TC55422: Operating Systems (Spring 2021])
School of Technology, - Tacoma

CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2021]

R2uzy School of Engineering and Technology, University of Washington -

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
=12 bits for the page offset

11822

June 1, 2021 TBSMZ; Operating Systems [Spring 2021]

School o Technology, ity i Tacoma

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

32
Page table size = % + 4Byte = 4MByte

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri i

June 1, 2021 ’ ’
nology, y Tacoma

11823

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma L824

June 1, 2021

Slides by Wes J. Lloyd

6/1/2021

L18.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
Multi—level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2021]
duzail, 2L e e Ty o s oy Uty T - TR

11825

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
% x4 =1MB per page table

= Memory requirement cut to %
= However pages are huge
= I[nternal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

June 1, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1826

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Addross
code o
T Allocate " "
g\ PFN valid prot present dirty
. 10 1 X 1 [
heap [0
— : 0
7 - o -
8 15 i W 1 1
S
0
" - 0
12 3 1 w- 1 1
stack 13 23 i w- 1 1
I
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

June 1, 2021 TCSSA[ZZ; Operating Systems [Spring 2021]

School of Technology, ity i Tacoma Ls.27

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address
code W
1\ Allocate
2
0
= O O e page table ed .
and 0 asted space %
o wW- 1
i e
10
" N o
2 .) — : :
stack 1 - ! = 1 2
o
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

Crd, A TCS5422: Operating Systems [Spring 2021]
2 School of Engineering and Technology, University of Washington - Tacoma

118.28

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)

= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables,IMultI-IeveI Page Tables,IN—IeveI Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2021]
iz, el SeFoo[of Enginearing andiechnolonyiUnve sty S = TR

11829

MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
= 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

June 1, 2021 TC55422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma 11830

Slides by Wes J. Lloyd

6/1/2021

L18.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table
PBTR | 201 }—‘ PETR | 200

=

= B k] =

2 PN T PN $E

2/ 12 - 1 201 —> 1| 12

o] © |8 2 I - -
B g " g

g & £ o] - of - |2

; o 10 T | 00 |*

o g The Page Directory [Page 1 of PT:Not Allocated]

o g -

0

o] o

o 18 g g

w| & |& of - - |5

| 15] & |£

| 5

Linear (Left) And Multi-Level (Right) Page Tables

11831

June 1, 2021 Tcss4lzz; Operating Systems [Spring 2021]

School o Technology, ity i Tacoma

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBIR | 201 PBTR | 200

=

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

PFN203

PFN204

. 8
rw 15

0
o] -
1
i

Linear (Left) And Multi-Level (Right) Page Tables

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 832

June 1, 2021

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

June 1, 2021 11833

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri chnology, University i Tacoma

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 000___Code
0000 0001 code
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
heap) VPN 8 bit
ffie8) Offset 6 bit
(free) P— c
= age table entry 23 (256)
111111 stack A 16-KB Address Space With 64-byte Pages

[13]12]ua]w0]o[8]7[6[5]4]3]2]1]0]

Offset

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma s34

June 1, 2021

EXAMPLE - 2

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

11835

June 1, 2021 Tcsz:lzcz‘; Operating Systems [Spring 2021]

chnology, ity i Tacoma

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. Page Directory Index _,

Bl o [s 7 [e[5]4a]3]2]1]0]
: VPN . Offset !
14-bits Virtual address

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1836

June 1, 2021

Slides by Wes J. Lloyd

6/1/2021

L18.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1stlevel)
= 4 bits page table index (PTI - 2" level)

Page Directory Index , ~ Page Table Index

13[12|11|1o[9[8[7|s s[a[3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

EXAMPLE - 3

= For thls example, how much space Is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space Is requlired for a two-level page table with
only 4 page table entrles (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)

= Page table = 4 entries x 4 bytes (1 x 64 byte page)

= 128 bytes required (2 x 64 byte pages)
= Savings = using just 12.5% the space !!!

June 1, 2021 Tcsz:lz‘z); Operating Systems [Spring 2021]

" . L1837
nology, y Tacoma

TCS5422: Operating Systems [Spring 2021]

Heia e Sehoslor e Ty f T

11838

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

June 1, 2021 Tcsz:lz‘z); Operating Systems [Spring 2021]

nology, ity ington - Tacoma

11839

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

LT School of Engineering and Technology, University of Washington -

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)

= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tablesl N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

928 2726252423222120191817161514131211109 8 76 54 3 21 0

[ANRRRRNRRRANANENNNREANRRRNAN

Page Directory Index P
VPN offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——F1>log,128 =7

June 1, 2021 TcssAlzz; Operating Systems [Spring 2021] L1841

School o Technology, ity ington - Tacoma

June 1, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of Washi Tacoma

L1842

Slides by Wes J. Lloyd

6/1/2021

L18.7

TCSS 422 A — Spring 2021 6/1/2021
School of Engineering and Technology

MORE THAN TWO LEVELS - 3 MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages) = To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required = 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables... = When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr " Pagosad i

3029282726252423222120191817161514131211109 8 7 6 5 4 10 Can't Store Page DireCtOry With 16K
[T T A pages, using 512 bytes pages.
T T i Pages only dereference 128 addresses

VPN
olist (512 bytes / 32 bytes)
Virtual address 30 bit irtual address 30 bit
Page size 512 byte Page size 512 byte
VPN 21 bit VPN 21 bit
Offset 9 bit Offset 9 bit
Page entry per page | 128 PTEs ——1—>log,128 =7 Page entry per page | 128 PTEs ——1—>log,128 =7

TCSS422: Operating Systems [Spring 2021]
(5 FES L1843 L2021 o T T T o e A S T = e usas

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri chnology, University i Tacoma

MORE THAN TWO LEVELS - 3 MORE THAN TWO LEVELS - 4

= To map 1 GB address space (23°=1GB RAM, 512-byte pages) = We can now address 1GB with“fine grained” 512 byte pages
= 214 = 16,384 page directory entries (PDEs) are required = Using multiple levels of indirection

30292827262524232221201918171615141312111098 7654 3 21 0

= When using 27 (128 entry) page tables...

" Peeg NNRNANRRNRRARRARANNANRANRRRN
Need three level page table: ; o
Page directory 0 (PD Index 0) " e
Page directory 1 (PD Index 1)
Page Table Index = Consider the implications for address translation!
Virtusl 2 ese Obit = How much space is required for a virtual address space with 4
Page size 512 byte entries on a 512-byte page? (let’s say 4 32-bit integers)
;‘;“s‘ﬂ ;1;“ = PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
Page entry per page 128 PTEs —+—> log,128 =7 = Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!
June 1, 2021 Tcsi:fﬁ;""“."““?SVs‘emsc[f‘f‘Z:fgi"“! %) Tacoma usas June 1, 2021 Iﬁi‘;ff’;°"°.’“"“?5V“e"}:£f|‘r“’::fgi?zili ity of Washi Tacoma 1846

ADDRESS TRANSLATION CODE

ADDRESS TRANSLATION - 2

pgd_offset():

_ 5 pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
// 5-level Linux Bage table address 1°°kup if (pgd_none(*pgd) || pgd_bad(*pgd)) | forthe process, returns the PGD entry that
// return 0; covers the requested address...
// Inputs: r_’:d = P4d_offiet(pgd, vpage) ; . 4d/ou
if (p4d_none(*p4d) || p4d_bad(*pdd))
// mm_struct - process’s memory map struct cotrEn 0p Takes a vpage address and the
// vpage - virtual page address pud = pud_offset(pdd, vpage); Ped/pd/pud entry and returns the
if (pud_none(*pud) || pud_bad(*pud)) relevant p4d/pud/pmd.
return 0;
// Define page struct pointers pmd = pmd_offset(pud, vpage);
if (pmd_none (*pmd) || pmd_bad (*pmd))
pgd_t *pgd; return 0; -
p4d_t *p4dd; if (!(pte = pte_offset_map(pmd, vpage)))
ud t *pud; return 0;
P - P if (! (page = pte_page(*pte))) I'unTa K 1 "
pmd_t *pmt; i @ — release temporary kernel mapping
= ’ for the page table entry

pte t *pte; physical_page_addr = page_to_phys (page)
- pte_unmap (pte) ;

* 5
struct page *page; return physical_page_addr; // param to send back

June 1, 2021 TCSS422: Dpe‘mling Systems [Spring. 2021! 11847 June 1, 2021 TCSS422: Dpe.ri(in.g Systems [Spring 2021].)) L18.48
0ol of School of Technology, University of Tacoma

chnology, ity i Tacoma

Slides by Wes J. Lloyd L18.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups

TCS5422: Operating Systems [Spring 2021]

duzail, 2L AT o T B i oy ATt A T T

118.49

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCS5422: Operating Systems [Spring 2021]

Heia e o T T T o e A S T = e

11850

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
=1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCS5422: Operating Systems [Spring 2021]

duzaih, el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

1851

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCS5422: Operating Systems [Spring 2021]

Heia 2w, ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

[SEX?)

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCS5422: Operating Systems [Spring 2021]

iz, el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11853

ANSWERS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Spring 2021]

Hea e, I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

11854

Slides by Wes J. Lloyd

6/1/2021

L18.9

TCSS 422 A — Spring 2021

School of E

ngineering and Technology

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)
= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
|- Chapter 21/22: Beyond Physical Memory |
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2021]

school of Technology, ity ington - Tacoma L1855

June 1, 2021

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2021]

LT School of Engineering and Technology, University of Washington -

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2021] 857
100l of Engineeri i .

nology, ity ington - Tacoma

June 1, 2021

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

= Provide the illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma L1858

June 1, 2021

LATENCY TIMES

= Design considerations:
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from 55D 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memaory, 20X 55D

" Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt

TCS5422: Operating Systems [Spring 2021]

School of Technology, ity i Tacoma L1859

June 1, 2021

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)

= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanlsms! Swapping Policies

June 1, 2021 TCS5422: Operating Systems (Spring 2021])
School of Technology, University of - Tacoma

118,60

Slides by Wes J. Lloyd

6/1/2021

L18.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

SWAP SPACE

= Disk space for storing memory pages
= “Swap” them in and out of memory to disk as needed

PEN O PN 1 PFN 2 PFN 3
Physical Proc0 Proc 1 Proc 1 Proc2
Memory | [veN 0] [VPN 2) [VPN 3] VPN 0]

Block0 Blockl Block2 Block3 Block4 Block5 Block6 Block 7

Swap
Space

Procl | Proc3 | Proc2
VPN 1] | [VPNO] | [VPN 1]

Proc3
IVPN 1]

Proc0
VPN 1]

Proc 1
[VPN 0]

Proc 0

wen g | [Freel

Physical Memory and Swap Space

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

June 1, 2021 ‘ L1861 ‘

SWAP SPACE - 2

= The size of the swap space can be seen using the Linux free
command: “free -h”

wlloyd@dione:~$ free -h
total shared buff/cache available
1.3G 4.4G 17G

306
31G

= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

TCS$422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma us62

June 1, 2021

SWAP SPACE - 3

= Swap space lives on a separate logical volume in Ubuntu Linux
that is managed separately from the root file system

= Check logical volumes with “sudo Ivdisplay” command:

- Logical volume ---
/dev/ubuntu-v

, time
available

2
976.00 MiB

1
inhertt
auto

= See also “lvm Ivs” command

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1863

June 1, 2021

PAGE LOCATION

= Memory pages are:
= Stored in memory
=Swapped to disk

= Present bit
=In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCS$422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Ls64

June 1, 2021

PAGE FAULT

= 0S steps in to handle the page fault
= Loading page from disk requires a free memory page

= Page-Fault Algorithm

PFN = FindFreePhysicalPage ()
iT (PPN == -1}

PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True

PTE.PFN = PEN

T S ORI

RetryInstruction()

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1865

June 1, 2021

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
=Threshold for when to swap pages to disk
=Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
=Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1866

June 1, 2021

Slides by Wes J. Lloyd

6/1/2021

L18.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 6/1

= Questions from 5/27
= Assignment 2 - May 31 (Late Penalty June 2, Closing June 4)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final exam - alternate format
= Quiz 4 - Page Tables
= Chapter 19: Translation Lookaside Buffer (TLB)

= Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memor
ing Mechanisms! Swa|

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

June 1, 2021 L1867

REPLACEMENT | @

POLICIES

TCSS422: Operating Systems [Spring 2021]

LT School of Engineering and Technology, University of Washington -

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

| AMAT = (Pyie * Tog) + (Priss * To) \

Argument Meaning

Ty The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puic The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider Py;; = .9 (90%), Piss = .1
= Consider Py;; = .999 (99.9%), Pss = .001

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri Technology, University i Tacoma

11869

June 1, 2021

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

= Used for a comparison
= Provides a “best case” replacement policy

= Consider a 3-element empty cache with the following page

accesses:
What Is the hit/miss ratlo?

0120130312

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma 870

June 1, 2021

FIFO REPLACEMENT

= Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

= How is FIFO different than LRU? LRU incorporates history

11871

June 1, 2021 Tcsz:lzg; Operating Systems [Spring 2021]

Technology, ity i Tacoma

RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

o — .
1 2 3 a H 6
Number of Hits

Random Performance over 10,000 Trials

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma us72

June 1, 2021

Slides by Wes J. Lloyd

6/1/2021

L18.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

HISTORY-BASED POLICIES

= LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= LRU requires constant reorganization of the cache

= Considers temporal locality (when pg was last accessed)

What Is the hit/miss ratlo?

= LFU: Least frequently used m

= Always replace page with the fewest # of accesses (front)
= Incorporates frequency of use - must track pg accesses

= Consider frequency of page accesses

01201303121 Hit/miss ratlo Is=6 hits

01201303121

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri Technology, University i Tacoma

11873

June 1, 2021

| |
" Consider a 3-element cache. With a FIFO "
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
[] June 1, 2024, TCSS@ZZ Operating Systems LSpHng 2021] [REY |
| gy i 4 |

| | |
" Consider a 3-element cache. With an LRU "
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
[} June 1, 2024 TCS8422: Operating Systems [Spring 2021] Lism
™ TS 5 W

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

When the cache is
large enough to fit
the entire workload,
it doesn’t matter
which policy you use.

Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

11876

June 1, 2021

6/1/2021

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

LRU is more likely
to hold onto
hot pages

Hit Rate

(recalls history)

Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

11877

June 1, 2021

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49

= Repeat loop
The Looping-Sequential Workload

Random performs
better than FIFO and

LRU for
cache sizes < 50

o /) Algorithms should provide
i “scan resistance”

Hit Rate
g

20 40 Ed 8 100
Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of Washi Tacoma

June 1, 2021 118.78

Slides by Wes J. Lloyd

L18.13

TCSS 422 A — Spring 2021 6/1/2021
School of Engineering and Technology

| | |
* With small cache sizes, for the looping sequential "

workload, why do FIFO and LRU fail to provide cache
hits?

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages
Cache hits in this scenario require consideration of

how frequently accessed memory is for cache = Times can be tracked with a list
replacement . .)

= For cache eviction, we must scan an entire list
Memory accesses are unpredictable and too
random. Unpredictable accesses require a random = Consider: 4GB memory system (232),

cache replacement policy for cache hits with 4KB pages (212)
Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching) . o)

= This requires 22° comparisons !!!
Unlike Random cache replacement, both FIFO
and LRU fail to speculate memory accesses in
advance to improve caching

= Simplification is needed

None of the above = Consider how to approximate the oldest page access
TCSS422: O ting Systs [Spring 2021]
- i L Heia e School of Engineering and Technolagy, University of Washington - Tacoma 11880

IMPLEMENTING LRU - 2 CLOCK ALGORITHM

= Harness the Page Table Entry (PTE) Use Bit " Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

= HW sets to 1 when page is used e

= 0S sets to O 0 W o
o
= Clock algorithm (approximate LRU) . /
=Refer to pages in a circular list ";‘ ey =
=Clock hand points to current page A :E{;g;
=Loops around we
IF USE_BIT=1set to USE_BIT =0 ! H b & b b
Cache Size (Blocks)

IF USE_BIT=0 replace page

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2021]
SansiLezl L1881 Lersilezl School of Engineering and Technology, University of Washington - Tacoma a8z

CLOCK ALGORITHM - 2 WHEN TO LOAD PAGES
= Consider dirty pages in cache = On demand > demand paging
= |f DIRTY (modified) bit is FALSE = Prefetching
=No cost to evict page from cache = Preload pages based on anticipated demand
= Prediction based on locality
= |f DIRTY (modified) bit is TRUE = Access page P, suggest page P+1 may be used
=Cache eviction requires updating memory

= What other techniques might help anticipate required
=Contents have changed memory pages?

Prediction models, historical analysis

In general: accuracy vs. effort tradeoff

=Clock algor'thm should favor no cost eviction High analysis techniques struggle to respond in real time

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]
iz, el ‘ L1883 Hea e, I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma usss

Slides by Wes J. Lloyd L18.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch

= Thrashing

processes and is low in memory

=Grouping disk writes helps amortize latency costs

=QOccurs when system runs many memory intensive

=Everything is constantly swapped to-and-from disk

June 1, 2021 ‘ Tcsizfg; Operating Systems [Spring 2021]

nology, y ington - Tacoma

118.85

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

June 1, 2021 TtSSMZ; Operating Systems [Spring 2021]

School o Technology, i Tacoma

118.86

QUESTIONS

Slides by Wes J. Lloyd

6/1/2021

L18.15

