TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Translation Lookaside Buffer (TLB), (¥
Multi-Level Page Tables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Mavzzpuze School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 5/27

®= Questions from 5/25

= Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
®m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
®= Final exam - alternate format
®= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L7.2

May 27, 2021

Lioyd

5/27/2021

L17.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCS5422 A 5 Assignments

Soring 2021
17 T
Home
Announcernents
Zoom * Upcoming Assignments
]
ke «¢ TCSS422- Online Daily Feedback Survey - 4/1
¥ Available until Apr'S at 11:59pm | Due Apr 5at10pm | /1 pts
Dlicriiccinne Psiw N -~ haelemeniimed sinmesss
TCSS422: Computer Operating Systems [Spring 2021]
Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma L17.3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 6 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
1 2 3 4 5 6 7 8 9 10
slow Just Right Fast
TCSS422: Computer Operating Systems [Spring 2021]
Mavizrgzoal School of Engineering and Technology, University of Washington - Tacoma L17.4

Lloyd

5/27/2021

L17.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

MATERIAL / PACE

class (45 respondents):
® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.35 (T - previous 6.30)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.47 ({ - previous 5.62)

® Please classify your perspective on material covered in today’s

TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021

L17.5

FEEDBACK

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021

L17.6

Slides by Wes J. Lloyd

5/27/2021

L17.3

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25
= Assighment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4
m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final Exam - alternate format
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L7z

May 27, 2021

OBJECTIVES - 5/27

® Questions from 5/25
m Assignment 2 - May 28
= REVIEW: Memory Segmentation Activity (available in Canvas)

= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
®m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
®= Final Exam - alternate format
®= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.8

May 27, 2021

Slides by Wes J. Lloyd L17.4

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25
B Assignment 2 - May 28
B REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final Exam - alternate format
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.9

May 27, 2021

OBJECTIVES - 5/27

® Questions from 5/25
= Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
®= Final Exam - alternate format
®= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.10

May 27, 2021

Slides by Wes J. Lloyd L17.5

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

WHAT IS THE KERNEL?

®What is the Linux Kernel?

* Linux kernel is the core executable engine that
facilitates the Linux operating system

= Where is the Linux Kernel?
= Located under /boot
= Can have multiple versions on the system

= Check current version with uname -a

root 217414 Apr 14 06:15 config- -generic
root 44328834 May 18 06:29 initrd.img- -generic

root 4081437 Apr 14 06:15 System.map- -generic
root 8449696 Apr 14 06:18 vmlinuz- -generic

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.11

May 27, 2021

COMPONENTS UNDER /BOOT

root 217414 Apr 14 06:15 config- -generic
root 44328834 May 18 06:29 initrd.img- -generic
root 4081437 Apr 14 06:15 System.map- -generic
root 8449696 Apr 14 06:18 vmlinuz- -generic

m config-<ver>: Kernel configuration

® jnitrd-<ver>: initial root file system that is mounted prior to
when the real root file system is available. The initrd is bound
to the kernel and loaded as part of the kernel boot procedure.

= System.map-<ver>: is a symbol file for the kernel. It lists
function entry points and addresses of kernel data structures
of a particular build of a kernel.

= vmlinuz-<ver>: the Linux kernel executable. The ‘z’ indicates
that it is compressed. An ‘X’ indicates uncompressed
(vmlinux). This can be a symbolic link to the actual kernel

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.12

May 27, 2021

Slides by Wes J. Lloyd L17.6

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

®E Linux Kernel Modules are modules of code that are
loaded and unloaded into the Linux kernel on demand

= They extend the functionality of the kernel without
integrating new code into the kernel which requires
recompilation of the full kernel (can be time consuming)

® Kernel modules can be dynamically loaded and removed
without rebooting the system

® sudo Ismod - lists actively loaded kernel modules

" HOW MANY DO YOU HAVE? - (sudo Ismod | wec -1)

TCSS422: Operating Systems [Spring 2021]

Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma

L17.13

ASSIGNMENT 3 - (2):

INTRODUCTION TO LINUX KERNEL MODULES

B Assighment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

® Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures

= For example: Linux task_struct process data structure

B Assignment 3 is scored in the Quizzes / Activities /
Tutorials category

= Lowest two grades in this category are dropped

TCSS422: Operating Systems [Spring 2021]

kg 277, AL School of Engineering and Technology, University of Washington - Tacoma

L17.14

Slides by Wes J. Lloyd L17.7

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25
B Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4
m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final Exam - alternate format
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.15

May 27, 2021

ALTERNATE FINAL EXAM

® Final Exam category will have two assignments

® Thursday June 8 from 3:40 to 5:40 pm
= Final Quiz (50 points)
= SHORT: fewer than half the number of questions as the midterm
= 1-hour
= Focus on new content - since the midterm

® Tutorial: Linux File Systems and Disk 1/0
= Available for 1-week ~June 5" to June 11t
= 50 points
= Presents new material in a hands-on, interactive format
= Complete activity and answer questions
= Individual work

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.16

May 27, 2021

Slides by Wes J. Lloyd L17.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/27

® Questions from 5/25
® Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4
= Assighment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final Exam - alternate format

= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

May 27, 2021

INTRODUCTION TO

CHAPTER 18:

PAGING

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

5/27/2021

L17.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2A32 [2720 =2712 pages

2A32 [2712 =2/720 pages

2A32 /2716 =2/716 pages

2732 [278 = 2724 pages

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pallev.com/app ..
I. .I
For the 4GB computer example, how many bits are
required for the VPN?

24 /PN bits (indexes
2724 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2120 locations)

12 VPN bits (indexes
2712 locations)

None of the above

) TCSSA_122: Operating Systems [Spring 2021] . L17.
.. May 27, 2081+ the presentationappsdive FENRITHERISFIGSAY IS RSty repnaRstieect poltneeemiapp 0 ..

Lloyd

5/27/2021

L17.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

| |
“For the 4GB computer example, how many bits are"

available for page status bits?

32-12 VPN bits
= 20 status bits

32 -24 VPN bits
= 8 status bits

32-16 VPN bits
= 16 status bits

32-20VPN bits
= 12 status bits

above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pallev.com/app ..
| ||

“ For the 4GB computer, how much space does this -
page table require? (number of page table entries x
size of page table entry)

2720 entries x4b =4 MB
27M12 entries x4b =16 KB
2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

) TCSSA_122: Operating Systems [Spring 2021] . L17.
.. May 27, 2081+ the presentationappsdive FENRITHERISFIGSAY IS RSty repnaRstieect poltneeemiapp 2 ..

Lloyd

5/27/2021

L17.11

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

For the 4GB computer, how many page tables (for
user processes) would fill the entire 4GB of memory?

4GB /16 KB =65,536
4 GB /64 MB =256
4GB /256 KB=16,384
4GB /4MB =1,024

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
®= How many pages would fit in physical memory?

® Now consider a page table:

® For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

® How much space does this page table require?
of page table entries x size of page table entry

® How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Spring 2021]

kg 277, AL School of Engineering and Technology, University of Washington - Tacoma

L17.24

Slides by Wes J. Lloyd L17.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/27

® Questions from 5/25

® Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4

= Assighment 3: (Tutorial) Introduction to Linux Kernel Modules
= Final Exam - alternate format

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

May 27, 2021

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

5/27/2021

L17.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

TRANSLATION LOOKASIDE BUFFER

®mlLegacy name...

m Better name, “Address Translation Cache”

mTLB is an on CPU cache of address translations

=virtual - physical memory

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

® Goal: s
Reduce access 0 . - 0 o L g
to the page Page Table[1] — 1124 éz
tables \ 1074 &

OO0 0000000000000 1024

= Example:

50 RAM accesses g 40100 - | rs g
for first 5 for-loop e : - m %
iterations * s0000 L = L a 732 I

= Move lookups o WIS m 4%
from RAM to TLB ?‘; wa 45 70T 4146 %‘s;
by Caching page & 1024 —'_.L.r._.._.r._.._.r._.._.r._.LI, 4006 ©
table entries 0 10 20 30 40 50

Memory Access

May 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L17.28

Lloyd

5/27/2021

L17.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER (TLB)

® Part of the CPU’s Memory Management Unit (MMU)

m Address translation cache

TLB P
" J TLB Hit ;
Logical Lookup : Physical
Address i TL Address
popular v to p s vlr
| 718 Miss

5 Page 0
Page Table E
all v to p entries

Page 1

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2021]
Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma

L17.29

TRANSLATION LOOKASIDE BUFFER (TLB)

® Part of the CPU’s Memory Management Unit (MMU)

m Address translation cache

 — 7 - A S
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches
o E =

! all v to p entries . —

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2021]
kg 277, AL School of Engineering and Technology, University of Washington - Tacoma

L17.30

Slides by Wes J. Lloyd

5/27/2021

L17.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25

B Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4

m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final Exam - alternate format

® Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios

® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

® For: array
® Hardware

TLB BASIC ALGORITHM

based page table
managed TLB

» VPN = (VirtualAddress & VPN_MASK) >> SHIFT
» ¢ (Success , TlbEntry) = TLB Lookup (VPN)
if (Success == True){ // TLB Hit
if (CanAccess (T1bEntry.ProtectBits) == True){

offset = VirtualAddress & OFFSET MASK

»PhysAddr»(leEntry.PFN << SHIFT) | Offset

AccessMemory (PhysAddr)

}else RaiseException (PROTECTION_ ERROR)

Generate the physical address to access memory

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

Slides by Wes J. Lloyd

5/27/2021

L17.16

TCSS 422 A — Spring 2021

School of Engineering and Technology

TLB BASIC ALGORITHM - 2

33 else{ //TLB Miss

12 PTEAddr = PTBR + (VPN * sizeof (PTE))

23 » PTE = AccessMemory (ETEAddr)

14: (..) // Check for, and raise exceptions..
Toi

l6: TLB Insert(VPN , PTE.PFN , PTE.ProtectBits)
g brid RetryInstruction ()

18: }

19:}

Retry the instruction... (requery the TLB)

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.33

May 27, 2021

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.34

May 27, 2021

Slides by Wes J. Lloyd

5/27/2021

L17.17

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25
B Assignment 2 - May 28

® Final Exam - alternate format
® Chapter 18: Introduction to Paging

= TLB Algorithm| Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

® Chapter 19: Translation Lookaside Buffer (TLB)

® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4
m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

May 27, 2021

School of Engineering and Technology, University of Washington - Tacoma

TLB EXAMPLE

0: int sum = 0 ;
1 for(i=0; i<10; i++){
2 sum+=a[i];
3 }

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

TCSS422: Operating Systems [Spring 2021]

May 27, 2021

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/27/2021
L17.35
OFFSET
00 04 08 12 16
a0l | a[1] | af2]
a3l | a[4] | a[5] | al6]
a7 | a8l | af9]
L17.36
L17.18

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/27/2021

TLB EXAMPLE - 2

g
1
2z
3

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i] ;

}

a[8], a[9]

in the TLB?

® Consider the code above:

Initially the TLB does not know where a[] is
® Consider the accesses:
a[0], a[1], a[2], a[3], a[4], a[53], a[6], a[7],

= How many pages are accessed?
= What happens when accessing a page not

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

04 08 12 16

OFFSET

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

May 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L17.37

TLB EXAMPLE - 3

w N o

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

® For the accesses: a[0], a[1], a[2], a[3], a[4],
a[5], a[6], a[7], a[8], a[9]

How many are hits?

How many are misses?

What is the hit rate? (%)

= 70% (3 misses one for each VP, 7 hits)

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[] | a[2

a3

a4l | a[s] | al6]

a8l | a[9]

May 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L17.38

Slides by Wes J. Lloyd

L17.19

TCSS 422 A — Spring 2021
School of Engineering and Technology

TLB EXAMPLE - 4

0: int sum = 0 ;
1: for(i=0; i<10; i++){ VPN = 00
210 sum+=al[i] ; VPN = 01
e 1 VPN =03
VPN =04
N . VPN =05
= What factors affect the hit/miss rate? -
* Page size M
. VPN =08
= Data/Access locality (how is data accessed?) i
Sequential array access vs. random array access ven-1o
. VPN =11
= Temporal locality N

= Size of the TLB cache VPN = 13
(how much history can you store?)

VPN =14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

a[7]

ag] | a[9]

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

OBJECTIVES - 5/27

® Questions from 5/25
= Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)

= Tutorial 2 - Pthread, locks, conditions tutorial - June 4

®m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

® Final Exam - alternate format

®= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

Slides by Wes J. Lloyd

5/27/2021

L17.20

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

WE WILL RETURN AT
4:50PM

TCSS422: Operating Systems [Spring 2021]

by 2, 2 School of Engineering and Technology, University of Washington - [illcoma

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2021]

HMavi2qpnal School of Engineering and Technology, University of Washington - D

Slides by Wes J. Lloyd L17.21

TCSS 422 A — Spring 2021

School of Engineering and Technology

LINEAR PAGE TABLES

®m Consider array-based page tables:

= Each process has its own page table

= 32-bit process address space (up to 4GB)
= With 4 KB pages

= 20 bits for VPN

= 12 bits for the page offset

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table size 4MB / process

32
Page table size = % * 4Byte = 4MByte

® Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

Slides by Wes J. Lloyd

5/27/2021

L17.22

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

LINEAR PAGE TABLES - 2

® Page tables stored in RAM

® Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
m Pagetable size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.45

May 27, 2021

OBJECTIVES - 5/27

® Questions from 5/25
= Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
®m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
®= Final Exam - alternate format
®= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables,|Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.46

May 27, 2021

Slides by Wes J. Lloyd L17.23

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

232

— x4 = 1MB per page table

214

= Memory requirement cut to V4
® However pages are huge
® Internal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021

L17.47

PAGE TABLES: WASTED SPACE

® Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address
Space
code o b,
1 Allocate | N .
g g PFN valid prot present dirty
y B \ 10 1 rx 1 0
h /
= C 0
/ 0
N O
4
g/ L 15 1 rw- 1 i
s/
10 ;'; 0
11 /
12 ..: 3 1 rw- 1 1
stack 13/ e 23 1 rw- 1 i
w——_
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Spring 2021]

kg 277, AL School of Engineering and Technology, University of Washington - Tacoma

L17.48

Lloyd

5/27/2021

L17.24

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

® Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address

Space

code

LN 1
1 ‘\‘Allucate /

PFN valid prot present dirty

L Most of the page table is unused
and full of wasted space. (73%)

8

9

w
n o/
12/ 2} 1 rw- Al il
stack 13/ 23 1 rw- 1 3
w—

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Spring 2021]

Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma

L17.49

OBJECTIVES - 5/27

® Questions from 5/25
= Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial - June 4
®m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
®= Final Exam - alternate format
®= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

= Smaller Tables,[Multi-level Page Tables,[N-level Page Tables

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021 L17.50

Slides by Wes J. Lloyd L17.25

TCSS 422 A — Spring 2021

School of Engineering and Technology

32
Page table size = % * 4Byte = 4MByte

MULTI-LEVEL PAGE TABLES

® Consider a page table:
® 32-bit addressing, 4KB pages
m 220 page table entries

®m Even if memory is sparsely populated the per process page
table requires:

= MUST SAVE MEMORY!

®m Often most of the 4MB per process page table is empty
® Page table must be placed in 4MB contiguous block of RAM

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

MULTI-LEVEL PAGE TABLES - 2

o[mi o e[w0]
: PFN] :

®m Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table

200
]
T g 2 2 3
> S PN § & PN
ol o 12 - 1| 201 |[———> 1] 12
1 m 13 o o -
= S o - 1| o 13 S
gl - - = = I
a T |o ol - - z
1| rw 100 2 a
= 1 203 1w 100
0 % The Page Directory [Page 1 of PT:Not Allocated]
0 z
T —_—
o
0
0 on
0 = S g .
o 0 (=}
1 rw 26 o 3
| v 15 1 rw 86 i
o
1 mw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2021]
kg 277, AL School of Engineering and Technology, University of Washington - Tacoma L1752

Slides by Wes J. Lloyd

5/27/2021

L17.26

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

Two level page table:
220 pages addressed with

two level-indexing
page directory index, page table index)

: S 0
z 0 b=y
1] w 86 o %
1] w 15 8 b L&
1] w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.53

May 27, 2021

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.54

May 27, 2021

Lioyd

5/27/2021

L17.27

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/27/2021

EXAMPLE

= 16KB address space, 64byte pages
® How large would a one-level page table need to be?
m 214 (address space) / 26 (page size) = 28 = 256 (pages)

Flag Detail

0000 000 code
00000001 code

(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
Besp VPN 8 bit
f
) Offset 6 bit
(free)

Page table entry 2%(256)
stack

1111 1111} stack A 16-KB Address Space With 64-byte Pages

13[12[11]10]9f8|7]6[5[af[3[2[1]0a]

Offset

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17:55

May 27, 2021

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

®m 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.56

May 27, 2021

Slides by Wes J. Lloyd L17.28

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:

= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. _Page Directory Index
3

13]12]11 10’[9|8\7\6 s|al3|2]1]o0

VPN Offset

cu)
>

14-bits Virtual address

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.57

May 27, 2021

PAGE TABLE INDEX

" 4 bits page directory index (PDI - 1stlevel)
m 4 bits page table index (PTI - 29 |evel)

. Page Directory Index | Page Table Index

12 |11 IOT\ g

I‘13 8‘7’615‘4|3‘2|1|0‘

VPN Offset
14-bits Virtual address

® To dereference one 64-byte memory page,

= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.58

May 27, 2021

Lloyd

5/27/2021

L17.29

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

m 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
®m 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

® Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17:59

May 27, 2021

32-BIT EXAMPLE

m Consider: 32-bit address space, 4KB pages, 22° pages
® Only 4 mapped pages

m Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

® Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

®m 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.60

May 27, 2021

Slides by Wes J. Lloyd L17.30

TCSS 422 A — Spring 2021

School of Engineering and Technology

OBJECTIVES - 5/27

B Questions from 5/25

B Assignment 2 - May 28
® REVIEW: Memory Segmentation Activity (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial - June 4

m Assignment 3: (Tutorial) Introduction to Linux Kernel Modules
® Final Exam - alternate format

® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios

® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables,

N-level Page Tables

May 27, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L17.61

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[1]

NN

Page Directory Index

ERNNRNNNRRANRRNNRDY

.
>

VPN

i
Calny

offset

Flag Detail

Virtual address

30 bit

Page size 512 byte

VPN 21 bit

Offset g bit

Page entry per page 128 PTEs —

—> log, 128 =7

May 27, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

Slides by Wes J. Lloyd

5/27/2021

L17.31

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

® Page size = 512 bytes / 4 bytes per addr

30292827262524232221201918171615141312111098 7654 3 21 0

ENNARRNANRNARNNARRNA AR ARRRAS

Page Directory Index

3l 3!

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2021]

Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma

L17.63

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

B Pagess

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

| Virtualaddress |30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021

L17.64

Lioyd

5/27/2021

L17.32

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
® When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.65

May 27, 2021

MORE THAN TWO LEVELS - 4

® We can now address 1GB with“fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 87654 3 21 0

NERRNRNNNNNNNNNENNRRAREE

o

Y. ¥

’ Page Table Index

L

VPN = >
® Consider the implications for address translation!
® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’'s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.66

May 27, 2021

Slides by Wes J. Lloyd L17.33

TCSS 422 A — Spring 2021
School of Engineering and Technology

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.67

May 27, 2021

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O0; covers the requested address...

p4d = p4d offset(pgd, vpage);
- = 4d/pud/pmd_offset():

£ 44 *pdad 4d bad (*p4ad p4d/pud/pmd_offset():

* (P4d_none (*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;
pud = pud_offset (p4d, vpage)
if (pud_none(*pud) || pud_bad(*pud))

return O0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset_map(pmd, vpage)))

return O0; pte_unmap()
if (! (iage z_Pte_Page (*pte))) release temporary kernel mapping
return 0; for the page table entry

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_ page_addr; // param to send back

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.68

May 27, 2021

Slides by Wes J. Lloyd

5/27/2021

L17.34

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
m Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 22° pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.69

May 27, 2021

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB
pages

® (#1) For a single level page table, how many pages are
required to index memory?

® (#2) How many bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

® (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L17.70

May 27, 2021

Slides by Wes J. Lloyd L17.35

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

® Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

® (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

® (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Li7.71

May 27, 2021

MULTI LEVEL PAGE TABLE EXAMPLE - 3

® Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L7.72

May 27, 2021

Slides by Wes J. Lloyd L17.36

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2021]

Mayj2Z202 School of Engineering and Technology, University of Washington - Tacoma

L17.73

ANSWERS
®m #1 - 4096 pages
m#2 - 12 bits
m#3 - 12 bits
m #4 - 4 bytes
#5 - 4096 x 4 = 16,384 bytes (16KB)
m #6 - 6 bits
m#7 - 6 bits
m #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

" #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 27, 2021

L17.74

Slides by Wes J. Lloyd L17.37

TCSS 422 A — Spring 2021 5/27/2021
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L17.38

