
TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.1Slides by Wes J. Lloyd

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Translation Lookaside Buffer (TLB),
Multi-Level Page Tables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES – 5/27

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 27, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

ONLINE DAILY FEEDBACK SURVEY

May 27, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L17.4

 Please classify your perspective on material covered in today’s
class (45 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.35 ( - previous 6.30)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.47 ( - previous 5.62)

May 27, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

MATERIAL / PACE

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.2Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

OBJECTIVES – 5/27

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

OBJECTIVES – 5/27

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

OBJECTIVES – 5/27

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

OBJECTIVES – 5/27

What is the Linux Kernel?
 Linux kernel is the core executable engine that

facilitates the Linux operating system

Where is the Linux Kernel?
 Located under /boot

Can have multiple versions on the system

Check current version with uname –a

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

WHAT IS THE KERNEL?

 config-<ver>: Kernel configuration

 initrd-<ver>: initial root file system that is mounted prior to
when the real root file system is available. The initrd is bound
to the kernel and loaded as part of the kernel boot procedure.

 System.map-<ver>: is a symbol file for the kernel. It l ists
function entry points and addresses of kernel data structures
of a particular build of a kernel.

 vmlinuz-<ver>: the Linux kernel executable. The ‘z’ indicates
that it is compressed. An ‘x’ indicates uncompressed
(vmlinux). This can be a symbolic link to the actual kernel

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

COMPONENTS UNDER /BOOT

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.3Slides by Wes J. Lloyd

 Linux Kernel Modules are modules of code that are
loaded and unloaded into the Linux kernel on demand

 They extend the functionality of the kernel without
integrating new code into the kernel which requires
recompilation of the full kernel (can be time consuming)

 Kernel modules can be dynamically loaded and removed
without rebooting the system

 sudo lsmod – lists actively loaded kernel modules

 HOW MANY DO YOU HAVE? - (sudo lsmod | wc –l)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

ASSIGNMENT 3:
INTRODUCTION TO LINUX KERNEL MODULES

 Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

 Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
 For example: Linux task_struct process data structure

 Assignment 3 is scored in the Quizzes / Activities /
Tutorials category

 Lowest two grades in this category are dropped

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

ASSIGNMENT 3 – (2):
INTRODUCTION TO LINUX KERNEL MODULES

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

OBJECTIVES – 5/27

 Final Exam category will have two assignments

 Thursday June 8 from 3:40 to 5:40 pm
 Final Quiz (50 points)

 SHORT: fewer than half the number of questions as the midterm

 1-hour

 Focus on new content - since the midterm

 Tutorial: Linux File Systems and Disk I/O
 Available for 1-week ~June 5th to June 11th

 50 points

 Presents new material in a hands-on, interactive format

 Complete activity and answer questions

 Individual work

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

ALTERNATE FINAL EXAM

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

OBJECTIVES – 5/27

CHAPTER 18:
INTRODUCTION TO

PAGING

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L17.18

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.4Slides by Wes J. Lloyd

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.1
9

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.2
0

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.2
1

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.2
2

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.2
3

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the
VPN?

 If we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

 How much space does this page table require?
of page table entries x size of page table entry

 How many page tables (for user processes)
would fill the entire 4GB of memory?

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

PAGING SYSTEM EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.5Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

OBJECTIVES – 5/27

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L17.26

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.6Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

OBJECTIVES – 5/27

 For: array based page table

 Hardware managed TLB

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

TLB – ADDRESS TRANSLATION CACHE

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

OBJECTIVES – 5/27

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

TLB EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.7Slides by Wes J. Lloyd

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data/Access locality (how is data accessed?)

 Sequential array access vs. random array access

 Temporal locality

 Size of the TLB cache
(how much history can you store?)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

TLB EXAMPLE - 4

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

OBJECTIVES – 5/27

WE WILL RETURN AT
4:50PM

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L17.41

CHAPTER 20:
PAGING:

SMALLER TABLES

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L17.42

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.8Slides by Wes J. Lloyd

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

OBJECTIVES – 5/27

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.9Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

OBJECTIVES – 5/27

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

MULTI-LEVEL PAGE TABLES - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.10Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

32-BIT EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.11Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2 – May 28

 REVIEW: Memory Segmentation Activity (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial – June 4
 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Final Exam – alternate format

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

OBJECTIVES – 5/27

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.63

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.64

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.65

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.66

MORE THAN TWO LEVELS - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.12Slides by Wes J. Lloyd

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.67

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.68

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.69

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.70

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.71

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.72

MULTI LEVEL PAGE TABLE EXAMPLE - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/27/2021

L17.13Slides by Wes J. Lloyd

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.73

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%

May 27, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.74

ANSWERS

QUESTIONS

