
TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.1Slides by Wes J. Lloyd

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Free Space Management,
Introduction to Paging and
the Translation Lookaside

Buffer (TLB)

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 5/25

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 25, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

ONLINE DAILY FEEDBACK SURVEY

May 25, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.4

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (53 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.30 ( - previous 6.44)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.62 ( - previous 5.69)

May 25, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

MATERIAL / PACE

Could you review the example question
(pg15, slides 2up) how it has out of bounds?

Consider a 64KB computer that loads a program.
The BASE register is set to 32768, the BOUNDS
register is set to 4096. What is the physical
memory address translation for the virtual
address of 6000 ?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

FEEDBACK

A: 34768 B: 38768

C: 32769 D: 36864

E: Out of Bounds F: None of the above

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.4Slides by Wes J. Lloyd

 Does it always checks splitting allocation f irst before
performing coalescing (regrouping) of chunks? Or is it
possible to directly perform coalescing if the request
bytes are big? (ex slide 15.56, pg 28, slides 2-up)

 Yes, the idea is to check available chunks in the free
space list to see if any chunk provides sufficient capacity.
We check every chunk to see if available space is greater
than or equal to 30 (the required capacity).

 Coalescing is expensive to perform. Operating systems
will be inherently lazy. They will generally postpone
coalescing until it is required.
 A trade-off might be to proactively coalesce two chunks for

every pass through the list

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK - 2

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

OBJECTIVES – 5/25

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.5Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

OBJECTIVES – 5/25

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 5/25

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.6Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

OBJECTIVES – 5/25

 Questions from 5/18

 Assignment 2

 Quiz 3 – Synchronized Array

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 5/20

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.7Slides by Wes J. Lloyd

CHAPTER 17: FREE
SPACE MANAGEMENT

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.13

 Best fit

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

 Worst fit

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

MEMORY ALLOCATION STRATEGIES

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.8Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

EXAMPLES

 First fit
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next fit
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

MEMORY ALLOCATION STRATEGIES - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.9Slides by Wes J. Lloyd

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.1
7

 For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

SEGREGATED LISTS

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.10Slides by Wes J. Lloyd

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

BUDDY ALLOCATION - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.11Slides by Wes J. Lloyd

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.2
1

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.2
2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.12Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

OBJECTIVES – 5/25

CHAPTER 18:
INTRODUCTION TO

PAGING

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.24

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.13Slides by Wes J. Lloyd

 Split up address space of process into f ixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates vir tual
addresses to physical addresses

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

ADVANTAGES OF PAGING

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.14Slides by Wes J. Lloyd

 Consider a 128 byte (27) address space
with 16-byte (24) pages

 Consider a 64-byte (26)
program address space

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 PAGE: Has two address components

 VPN: Virtual Page Number (serves as the page ID)

 Offset: Offset within a Page (indexes any byte in the page)

 Example:
Page Size: 16-bytes (24),
Program Address Space: 64-bytes (26)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.15Slides by Wes J. Lloyd

 Consider a 64-byte (26) program address space (4 pages22)

 Stored in 128-byte (27) physical memory (8 frames23)

 Offset is preserved
 4 bits indexes any byte

 Page size is 16 bytes (24)

 Page table translates a
Vir tual Page Number (VPN) to
a Physical Frame Number (PFN)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

PAGING DESIGN QUESTIONS

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.16Slides by Wes J. Lloyd

 Example:

 Consider a 32-bit process address space (4GB=232 bytes)

With 4 KB pages (4KB=212 bytes)

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory is required to store the page table
for 1 process?
 Hint: # of entries x space per entry
 4,194,304 bytes (or 4MB) to index one process

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.17Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.18Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

PAGE TABLE ENTRY

 Common flags:

 Valid Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

PAGE TABLE ENTRY - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.19Slides by Wes J. Lloyd

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.20Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

COUNTING MEMORY ACCESSES

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.21Slides by Wes J. Lloyd

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.22Slides by Wes J. Lloyd

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
3

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
4

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.23Slides by Wes J. Lloyd

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
5

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
6

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.24Slides by Wes J. Lloyd

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the
VPN?

 If we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

 How much space does this page table require?
of page table entries x size of page table entry

 How many page tables (for user processes)
would fi ll the entire 4GB of memory?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

PAGING SYSTEM EXAMPLE

WE WILL RETURN AT
4:50PM

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.48

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.25Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

OBJECTIVES – 5/25

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.50

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.26Slides by Wes J. Lloyd

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for-loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

TRANSLATION LOOKASIDE BUFFER - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.27Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.28Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

OBJECTIVES – 5/25

 For: array based page table

 Hardware managed TLB

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.29Slides by Wes J. Lloyd

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

TLB – ADDRESS TRANSLATION CACHE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.30Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

OBJECTIVES – 5/25

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

TLB EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.31Slides by Wes J. Lloyd

 Consider the code above:

 Init ially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

TLB EXAMPLE - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.32Slides by Wes J. Lloyd

 What factors affect the hit/miss rate?

 Page size

 Data/Access locality (how is data accessed?)

 Sequential array access vs. random array access

 Temporal locality

 Size of the TLB cache
(how much history can you store?)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

TLB EXAMPLE - 4

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

OBJECTIVES – 5/25

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.33Slides by Wes J. Lloyd

CHAPTER 20:
PAGING:

SMALLER TABLES

May 25, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L16.65

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

LINEAR PAGE TABLES

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.34Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.35Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

OBJECTIVES – 5/25

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

PAGING: USE LARGER PAGES

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.36Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.37Slides by Wes J. Lloyd

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

OBJECTIVES – 5/25

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

MULTI-LEVEL PAGE TABLES

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.38Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.39Slides by Wes J. Lloyd

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.40Slides by Wes J. Lloyd

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

PAGE DIRECTORY INDEX

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.41Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

EXAMPLE - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.42Slides by Wes J. Lloyd

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

32-BIT EXAMPLE

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)
 TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

OBJECTIVES – 5/25

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.43Slides by Wes J. Lloyd

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

MORE THAN TWO LEVELS - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.44Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.45Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

MORE THAN TWO LEVELS - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.46Slides by Wes J. Lloyd

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.47Slides by Wes J. Lloyd

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many of fset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

MULTI-LEVEL PAGE TABLE EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.48Slides by Wes J. Lloyd

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

MULTI LEVEL PAGE TABLE EXAMPLE - 3

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.49Slides by Wes J. Lloyd

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if al l of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.97

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%

May 25, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

ANSWERS

TCSS 422 A – Spring 2021
School of Engineering and Technology

5/25/2021

L16.50Slides by Wes J. Lloyd

QUESTIONS

