TCSS 422 A — Spring 2021 5/20/2021
School of Engineering and Technology

OBJECTIVES - 5/20

TCSS 422: OPERATING SYSTEMS

" 4 /'5 =< | = Questlons from 5/18 |
S -
2 N = Assignment 2
Memory Virtualization 3 e = Quiz 3 - Synchronized Array
with Segments,) = Tutorial 2 - Pthread, locks, conditions tutorial
Introduction to Paging : L = Chapter 14: The Memory API

= Chapter 15: Address Translation
= Chapter 16: Segmentation
LR B =Ch pt 17 Fr . Space M t
School of Engineering and Technology apter s rree pac.e anage.men
University of Washington - Tacoma = Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Spring 2021]

Mavj20s2020 School of Engineering and Technology, University of Washington [fll Tacoma ievRojzan

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Ls2

TCSS 422 - Online Daily Feedback Survey - 4/1
ONLINE DAILY FEEDBACK SURVEY i e
Question 1 05pts.
. N . On a scale of 1 to 10, pl ify your perspectis in today’s
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 a4 5 & 71 8 8 10
= Tuesday surveys: due by ~ Wed @ 11:59p S i e
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments
sping 2021
! ! Question 2 05pts
Home
Ariouricaiats Please rate the pace of today’s class:
Zoom * Upcoming Assignments 1 2 3 4 5 6 7 8 9 10
Sylbhis < TCSS 422 - Online Daily Feedback Survey - 4/1
: " Avallable unci Apr 3 2t 11:59pm | Due Apr 5at-10am. | /1pts
Dicriiccinne o Y eimsas
TCS5422: Computer Operating Systems [Spring 2021] TCSS422: Computer Operating Systems [Spring 2021
May 20, 2021 ‘ e ote 22 |, us3 Vay 20, 2021 School of Encier andt Tochnaloqy, Uy of Washingion - Tacoma usa

MATERIAL / PACE FEEDBACK

= Please classify your perspective on material covered in today’s
class (46 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.44 (T - previous 6.32)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.69 (T - previous 5.63)

May 20, 2021 TCS5422: Computer Operating Systems [Spring 2021]

: uss May 20, 2021 TC55422: Operating Systems [Spring 2021]
School of

School of Technology, University of Washington - Tacoma L6

Tacoma

Slides by Wes J. Lloyd L15.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/20/2021

OBJECTIVES - 5/20

= Questions from 5/18
|IAssIgnment 2 |
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

OBJECTIVES - 5/20

= Questions from 5/18
= Assignment 2
| = Quiz 3 - Synchronized Array |
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

May 20, 2021 ity . T —

us7

TCS5422: Operating Systems [Spring 2021]
e H

ievRojzan Sehoslo Eeolon) i i = e

s

OBJECTIVES - 5/20

= Questions from 5/18
= Assignment 2
= Quiz 3 - Synchronized Array
|I Tutorlal 2 - Pthread, locks, conditlons tutorlal |
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

OBJECTIVES - 5/20

= Questions from 5/18

= Assignment 2

= Quiz 3 - Synchronized Array

= Tutorial 2 - Pthread, locks, conditions tutorial

| = Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

May 20, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

59

May 20,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, Universi ington - Tacoma

115.10

CHAPTER 14: THE

MEMORY API

TCSS422: Operating Systems [Spring 2021]

Mav2uiznzs School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

May 20, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi - Tacoma

us.12

Slides by Wes J. Lloyd

L15.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

" void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

5/20/2021

May 20, 2021

TCSS422: Operating Systems [Spring 2021] 11513
hool of Engineeri i .

nology, ity ington - Tacoma

DOUBLE FREE

int *x = (int *)malloc(sizeof(int)); // allocated
free(x); free
free (x); free repeatedly

= Can’t deallocate twice
= Second call core dumps

28 iR < 26 <

l Heap | | l Heap
I free(x)

T Stack | | Tsu(k

i KoK g | 2KBvalld) [
Address Space Address Space

i | e
(free) | — (free) i — Lkt
i i Error

May 20, 2021

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University

Tacoma

Ls.14

SYSTEM CALLS

= brk(), shrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

May 20, 2021 L1515

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri nology, University i Tacoma

OBJECTIVES - 5/20

= Questions from 5/18
= Assignment 2
= Quiz 3 - Synchronized Array

= Tutorial 2 - Pthread, locks, conditions tutorial

= Chapter 14: The Memory API

| = Chapter 15: Address Translation

= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

May 20,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of

- Tacoma

L15.16

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2021]

Mav2uiznzs School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 15: Address translation
=Base and bounds
= HW and OS Support

May 20, 2021 TBSMZ; Operating Systems [Spring 2021]

School o Technology, University of

- Tacoma

11518

Slides by Wes J. Lloyd

L15.3

TCSS 422 A — Spring 2021 5/20/2021
School of Engineering and Technology

ADDRESS TRANSLATION

BASE AND BOUNDS

Virtual mapping .)
= 64KB KB 0KB = Dynamic relocation
Address space Program Code Operating Syst
il = Two registers base & bounds: on the CPU
example i
Heap = OS places program in memory
= Translation: l v
i Code 2 = Sets base register
n.1appllng e g
LU - . & { physical address = virtual address + base }
physical (free) but not in use) 2
t g .
. as. Stack 2 = Bounds register
T = Stores size of program address space (16KB)
(ot in use) = OS verifies that every address:
Stack)
= L 64KB [0 < virtual address < bounds J
16KB i
g Spac Physical Memory

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

115.19 May 20, 2021

115.20

128 : movl 0xO(bebx), %eax ‘ e - MMU
1K 135 |mod Sen, 0 (tebm)
= Base = 32768 = Program Code = Portion of the CPU dedicated to address translation
= Bounds =16384 - ” = Contains base & bounds registers
eap
- . . .
Fetch mstru(?tlon at 128 (virt addr) 1 4B l = Base & Bounds Example:
- Z;);;:dr ;;;” a3c|2dr6+8base reg . = Consider address translation
. = 4
w332z = 4 KB (4096 bytes) address space, loaded at 16 KB physical location
= Execute instruction o
ree
= Load from address (var x is @ 15kb=15360) Virtual Address Physlcal Address
= 48128 = 15360 + 32768 (base) -- found x... stack 0 16384
= Bounds register: terminate process if 1024 17408
= ACCESS VIOLATION: Virtual address > bounds reg LAKE; 3000 19384
15KB [x000 Intx
[physical address = virtual address + base J 166 Stack FAULT 4400 20784 (out of bounds)
| wemam St ot Engeag o Techmegy Unkersityof WashingtonTcoma usa | a0t | eknnotagy ety ofWashingion- Tscoma sz

OS SUPPORT FOR MEMORY
DYNAMIC RELOCATION OF PROGRAMS VIRTUALIZATION

= Hardware requirements: = For base and bounds OS support required
Requirements m = When process starts running
Privileged mode CPU modes: kernel, user Allocate address space in physical memory
Base / bounds registers Regi to support add ion
Translate virtual addr; check if in Translation circuitry, check limits =When a process is terminated
bounds Reclaiming memory for use
Privileged instruction(s) to Instructions for modifying base/bound .
update base / bounds regs registers * When context switch occurs
Privileged instruction(s) Set code pointers to OS code to handle faults Saving and storing the base-bounds pair
to register exception handlers
Ability to raise exceptions For out-of-bounds memory access, or - Exceptnl)n har.1dlers _
attempts to access privileged instr. Function pointers set at OS boot time
May 20, 2021 TCSS422: Operating Systems [Spring 2021] L1523 ‘ May 20, 2021 TCS$422: Operating Systems [Spring 2021]

524

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L15.4

TCSS 422 A — Spring 2021 5/20/2021
School of Engineering and Technology

0S: WHEN PROCESS STARTS RUNNING 0S: WHEN PROCESS IS TERMINATED

= 0S searches for free space for new process = 0S places memory back on the free list
= Free list: data structure that tracks available memory slots
OKB 0KB Free list 0Ke
Operating System l Operating System
Operating System
The OS lookup the free list 16K8 16K8
16kB 16KB . 16KB _
Free list (not in use) (not in use)
(not in use) ¢ S5 ¢ 3268
16K8 328 o e Process A 32KB (not in use)
Heap
i (allocated bt ot i use) 48KB l b
48kB 48KB Stack (not in use) (not in use)
64K8 48KB 64K8
(not in use) Physical Memory Physical Memory

B
Physical Memory

TCS5422: Operating Systems [Spring 2021]

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

115.26

11525 May 20, 2021

May 20, 2021

0S: WHEN CONTEXT SWITCH OCCURS DYNAMIC RELOCATION

= 0S must save base and bounds registers = 0S can move process data when not running
= Saved to the Process Control Block PCB (task_struct in Linux)

. OS deschedules process from scheduler

. OS copies address space from current to new location

Process A PCB 1
2
3. 0S updates PCB (base and bounds registers)
4

kB Context Switching %8
Operating System — Operating System
. OS reschedules process
16KB 16KB
(not in use) base (not in use) base
26 328 208 —{ 28] = When process runs new base register is restored to CPU
Rroces s being Process A i
Currently Running ounds | bounds
48KB ~ r1 64KB .
aske [| e — = Process doesn’t know it was even moved!
Process B CurrentlyRunning | |
64KB. 64KB. s
Physical Memory Physical Memory
TCSS422: Operating Systems [Spring 2021] TCS5422: Operating Systems [Spring 2021]
L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome us27 ievRogzran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 1528

| | |
"Consider a 64KB computer the loads a program. The'
BASE register is set to 32768, and the BOUNDS

OBJECTIVES - 5/20

register is set to 4096. What is the physical memory = Questions from 5/18
address translation for a virtual address of 6000 ? = Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
34768
= Chapter 14: The Memory API
38768 = Chapter 15: Address Translation
|I Chapter 16: Segmentation |
32769 = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
36864
Out of bounds
- ; LR May 20, 2028 e o st - R us0

Slides by Wes J. Lloyd L15.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/20/2021

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Spring 2021]

Mav2uiznzs School of Engineering and Technology, University of Washington -

BASE AND BOUNDS INEFFICIENCIES

OKB

= Address space 1KB | Program Code
N N 162 2KB
= Contains significant unused memory o
= Is relatively large 2] p—

= Preallocates space to handle stack/heap growth ¢ ‘17

= Large address spaces

= Hard to fit in memory (free)
= How can these issues be addressed? l
14KB
15KB Stack
16KB
May 20, 2021 ;ﬁz‘;ﬁ;DPE.'“"“?SV“E"}:LE‘:"::‘C?;;’“].)) Tacoma us32

MULTIPLE SEGMENTS

= Memory segmentation

= Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Each segment can placed separately

=Track base and bounds for each segment (registers)

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16KB - ‘
(not in use)
t Segment Base Size
Srack Code 32K 2K
(not in use)
32KB o Heap 34K 2K
Heap Stack 28K 2K
HEk0 (not in use)
64K

B
Physical Memory

TCSS422: Operating Systems [Spring 2021] 11533
hool of Engineeri i .

hnology, ity i Tacoma

May 20, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

May 20, 2021 11534

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base }

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Segment __Base

Bounds check: .
Is virtual address within 2KB [lileed

address space? ogdens

(not in use)

Virtual Address Space Physical Address Space

ADDRESS TRANSLATION: HEAP

irtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Segment Base size

Heap 3K 2%
(not in use)
32k8
Code
4KB 34kB 104 + 34K or 34920
- [« is the desired
Hesp
= sical address
6 TP 36k | Physical add

(not in use)
Address Space

Physical Memory

TCSS422: Operating Systems [Spring 2021]

School of Technology, ity i Tacoma L1535

May 20, 2021

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma L15.36

May 20, 2021

Slides by Wes J. Lloyd

L15.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

5/20/2021

= Heap starts at 4096 + 2 KB seg size = 6144
= Offset= 7168 > 4096 + 2048 (6144) T e
6KB
;E; (not in use)
Address Space

TCS5422: Operating Systems [Spring 2021]

L AL,) AT o T B i oy ATt A T T

11537

SEGMENT REGISTERS

= Used to dereference memory during translation

13 M2 4% 10,9 8 7 & 5 4 B3 2 1.0

| I |
T

T
Segment Offset

= First two bits identify segment type

= Remaining bits identify memory offset

= Example: virtual heap address 4200 (01000001101000)
Segment bits

13 12 17 10.9 8 7 ‘6 5 4 3 2 1 @
0

| o[1|o|ojojoflo|1|1]|0]1 0 0 | Code 00
l I | Heap 01

T T Stack 10
Segment Offset - 11

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1538

‘ May 20, 2021

SEGMENTATION DEREFERENCE

get 2 bits of 14-bit VA
Segment tualhddress & SEG_MASK) >> SEG_SHIFT

Offset = VirtualAddress & OFFSET_MASK
if (offset >= Bounds[Segment])
RaiseException (PROTECTION_FAULT)
else
PhysAddr = Base [Segment] + Offset
Register = AccessMemory (PhysAddr)

RGN

= VIRTUAL ADDRESS = 01000001101000

" SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
" OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104
" OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCS5422: Operating Systems [Spring 2021]

L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11539

STACK SEGMENT

= Stack grows backwards (FILO)
®Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
26KB T i i ive-
Segment Register(with Negative-Growth Support)
Stack

28KB Segment Base Size Grows Positive?

(not in use) Cods 22K 2K £

Heap 34K 2K s

Stack 28K 2K o

Physical Memory

TCS5422: Operating Systems [Spring 2021]

ievRogzran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

L15.40

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

® Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® 50 (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K :h Read-Write
stack 28K 2K 0 Read-Write

TCS5422: Operating Systems [Spring 2021]

evi2uiaal Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

541

Slides by Wes J. Lloyd

| |
"Consider a program with 2KB of code, a 1 KB stack,"

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

L15.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/20/2021

SEGMENTATION GRANULARITY

= Coarse-grained

=" Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

May 20, 2021

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri Technology, University i Tacoma

115.43

SEGMENTATION GRANULARITY - 2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
=Stored in memory
=Tracked large number of segments

TCS5422: Operating Systems [Spring 2021] L15.44

May 20, 2021

MEMORY FRAGMENTATION

= Consider how much free space? Not compacted
= We'll say about 24 KB K8
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16K8B
segment (not in use)
24KB
Allocated
= Can we fulfil the request for 20 KB of 3B o
contiguous memory? 40KB Allgtatad
45K8 (not in use)
56KB
Allocated
64K8
TCSS422: Operating Systems [Spring 2021]
May 20, 2021 e e > Technolos iUnNers Y . TET L15.45

School of Technology, i i Tacoma
= Supports rearranging memory Compacted
[N ——
= Can we fulfil the request for 20 KB of 8KB | Operating System
contiguous memory?
16k8
= Drawback: Compaction is slow 24KE
= Rearranging memory is time consuming Allocated
= 64KB is fast 228
= 4GB+ ... slow 40K8
= Algorithms: 48KB
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) i
TCSS422: Operating Systems [Spring 2021]
ievRogzran Sehoolof Ergineerins andTechnokoeyjUnvest f Tecoma 11546

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

Mav2uiznzs School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/20

= Questions from 5/18
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
| = Chapter 17: Free Space Management |
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2021]

”
School of Technology, University of Washington - Tacoma L1548

May 20, 2021

Slides by Wes J. Lloyd

L15.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2021]

Mav2uiznzs School of Engineering and Technology, University of Washington -

5/20/2021

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University i - Tacoma L15.50

May 20, 2021

FREE SPACE MANAGEMENT

variable-sized requests?

approaches?

= How should free space be managed, when satisfying

= What are the time and space overheads of alternate

= What strategies can be used to minimize fragmentation?

May 20, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

1551

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

May 20,2021

TCS5422: Operating Systems [Spring 2021] L5552
e :

School of Technology, University of Washi Tacoma

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [_free [Tused | free]
0

10 20 30

= Request for 15-bytes

. addr:0 addr:20
free list. head — 101.10 — jen:10 —> NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

May 20, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

Technology, ity i Tacoma

11553

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: Jost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

May 20, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

L1554

Slides by Wes J. Lloyd

L15.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tused | free |
0 10 20 30

addr:0 addr:20

free list: 'head —> 1...170 — 1len:10 — > NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [TUsed [free |
0 10

20 21 30

addr:0 addr:21

free listt head — 1...90 — 1cnig —> NULL

ALLOCATION STRATEGY: SPLITTING

5/20/2021

TCS5422: Operating Systems [Spring 2021]
L AL,) AT o T B i oy ATt A T T

L1555

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head > len:10 > Len:10 > len:lo

— NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

—> NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1556

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter
= How does the OS know how much memory to free?

= Header block

} The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

= Small descriptive block of memory at start of chunk

TCS5422: Operating Systems [Spring 2021]
L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

L1557

MEMORY HEADERS - 2

size: 20

__header_t {
size;
magic;

magic: 1234567

The 20 bytes } header_t;
returned to caller

. A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - sizeof (header_t);

TCS5422: Operating Systems [Spring 2021]
evi2uiaal Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11559

TCSS422: Operating Systems [Spring 2021]
ievRogzran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 11558
= Simple free list struct
struct _ node_t {
= Use mmap to create free list
= 4Kkb heap, 4 byte header, one contiguous free chunk
/ mmap () returns a pointer to a chunk of free space
node_t *head = mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP7M0N\MAP7PRIVATE, 1, 0);
head->size = 4096 - of (node_t) ;
head->next = NULL;
TCSS422: Operating Systems [Spring 2021]
pievRogzran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 11560

Slides by Wes J. Lloyd

L15.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

FREE LIST - 2

= Create and initialize free-list “heap”

node_t

- MAP_ANON|MAP_PRIVATE, -1, 0);
head->size sizeof (node_t):
head->next

= Heap layout:
[virtual address: 16KB]

- header: size field
size: 4088
head —>{ next: 0 header: next field(NULL is 0)
e the rest of the 4KB chunk

TCS5422: Operating Systems [Spring 2021]

L AL,) ‘ AT o T B i oy ATt A T T

‘ L1561 ‘

5/20/2021

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> T)
size: 4088 g3 20

magic: 1234567

ptr

the rest of Firstblock 1} 100 bytes now allocated
the 4KB chunk is used
\—1 head —>
size: 3980
next 0

the free 3980 byte chunk

TCS5422: Operating Systems [Spring 2021]

ievRojzan o T T T o e A S T = e

‘ L1562 ‘

FREE LIST: FREE() CALL

" Addresses of chunks & byt s { [virtual address: 16K8]

magic: 1234567

= Start=16384 100 bytes still allocated

+ 108 (end of 1st chunk) size: 100
+ 108 (end of 2"d chunk) sptr e AL
ytes still allocate
+ 108 (end of 3" chunk) } (but about to be freed)
=16708 size: 100
magic: 1234567
100 bytes still allocated
pead sze. 3764
next: 0

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Spring 2021]

L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ L1563 ‘

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
= Our 3 chunks start at 16 KB
(@ 16,384 bytes)

[virtual address: 16KB]

100 bytes still allocated

= Free chunk #2 - sptr

School of Engineering and Technology, University of Washington - Tacoma

Block (now a free chunk of
= Sptr = 16500 |_Now Free memory)
. Ze 100
= addr - sizeof(node_t) = =
100 bytes still allocated
= Actual start of chunk #2 size 3764
= 16492 e
The free 3764-byte chunk
| |
May 20, 2021 TCS5422: Operating Systems [Spring 2021] ‘ e ‘

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: [virtual address: 16k8]

100 |«——

= Free(16392) G0
= Free(16608) - (now free)
siz 100 [«————
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head
= External fragmentation Fnext 16384 |
= Free chunk pointers
out of order (now free)
size 3764 |«
= Coalescing of next et]
pointers is needed The free 3764-byte chunk
[

TCS5422: Operating Systems [Spring 2021]

evi2uiaal Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ L1565 ‘

Slides by Wes J. Lloyd

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= 1 break sprk() 0
Ayl
break 7 (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCS$422: Operating Systems [Spring 2021]
pievRogzran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 11566

L15.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Spring 2021]
L AL,) AT o T B i oy ATt A T T

L1567

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

5/20/2021

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 ——> 20 —> NULL

= Result of Best Fit

head —>» 10 —> 30 —> 5 ——> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1568

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1569

| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit

Worst Fit

First Fit

None of the above

All of the above

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma sz

Slides by Wes J. Lloyd

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

TCS5422: Operating Systems [Spring 2021]

pievRogzran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

us72

L15.12

TCSS 422 A — Spring 2021 5/20/2021
School of Engineering and Technology

|
A computer system manages program memory using
three separate segments for code, stack, and the

BUDDY ALLOCATION - 2

heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
= Allocated fragments, typically too large example of:

= Buddy allocation: suffers from internal fragmentation

= Coalescing is simple External fragmentation
=Two adjacent blocks are promoted up . .
Binary buddy allocation
Internal fragmentation

Coalescing

Splitting
May 20, 2021 Tc:sAzz: Operating Systems [Spring 2021]) .
00l of inology, y Tacoma

11573

|]
"A request is made to store 1 byte. For this scenario,'
. . . OBJECTIVES - 5/20
which memory allocation strategy will always locate
memory the fastest? = Questions from 5/18
= Assignment 2
Best fit = Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
Worst fit = Chapter 14: The Memory API
= Chapter 15: Address Translation
Next fit = Chapter 16: Segmentation
= Chapter 17: Free Space Management
None of the above | = Chapter 18: Introduction to Paging |
All of the above
-) LR ‘ May 20,2021 ;ﬁz‘;ﬁ;DPE.'“"“?SV“E"}:S“:"::‘CF;?“]. - ngton - Tacoma us7e

OBJECTIVES - 5/21

= Questlons from 5/19
= Tuesday Class Actlvity: (Submlt by May 22 11:59pm AOE)

CHAPTER 18: = = = Tutorial 2 posted (pthreads, locks, conditions)
————= = = Quiz 3 posted - Active Reading Chapter 19
INTRODUCTION TO ; = Asslgnment 2 (based on Ch. 30)
PAG | NG : = Chapter 17: Free Space Management

| = Chapter 18: Introduction to Paging |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

May 20, 2021 May 20, 2021 TBSMZ; Operating Systems [Spring 2021]

School o Technology, University of Washington - Tacoma

11578

Slides by Wes J. Lloyd L15.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma Ls79

5/20/2021

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1580

P Table:
PAGING: EXAMPLE NOEXH

VP1 > PF7

VP2 > PF5

= Consider a 128 byte (27) address space VP3 > PF2
with 16-byte (2%) pages 7

page frame 0 of
physical memory

= Consider a 64-byte (2°) (unused) | page frame 1
program address space

reserved for OS

page 3 of AS | page frame 2

page 0 of AS | page frame 3

0 64

(page 0 of (unused) | page frame 4
16 the address space) %

(page 1) page 2 of AS | page frame 5
32 %

(page 2) (unused) page frame 6
48 12
@ o= page 1 of AS | page frame 7

128

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2021]
L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11581

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
=VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)

VPN offset
— 1

ol
= Example:

Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)

VPN offset
Here program can have

J pages...

TCS5422: Operating Systems [Spring 2021]

ievRogzran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

L1582

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>22)
= Stored in 128-byte (27) physical memory (8 frames—> 23)

. VPN ffset
= Offset is preserved o
—_—

= 4 bits indexes any byte Virtual
e e [0 2 [o] [o]
= Page size is 16 bytes (24) l l

= Page table translates a

Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: i l l
VPO - PF3 Physical
VP1 > PF7 Address‘l‘l‘l|o|l|o|l
VP2 - PF5 L TEl
VP3 > PF2 PFN offset
TCSS422: Of ing Sy [Spring 2021]
May 20,2021 ‘ e e S s NS s

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Ls84

Slides by Wes J. Lloyd

L15.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/20/2021

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 bytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 220 translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1585

May 20, 2021

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN
VPN,

= Each entry requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is
unrealistically small) VPN 048576

= How much memory is required to store the page table
for 1 process?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1586

May 20, 2021

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efflclent?

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 20, 2021 L1587

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

510N BT XSXNBRANVIBT6514131211109 876543210
| | EEEREEEEE

An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 20, 2021 115.88

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NVVBTXBAB2A019181716151413121110987 6543210
= algle
| | EEERSEEER

An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1589

May 20, 2021 ‘

PAGE TABLE ENTRY - 2

= Common flags:

= Valld Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present BIt: Indicating whether this page is in physical
memory or on disk(swapped out)

= DIrty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1590

May 20, 2021

Slides by Wes J. Lloyd

L15.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU
= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

5/20/2021

May 20, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L5

1

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Translation

= Issue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:
stores active process VPO > PF3
Facilitates translation VP12 PR

. VP2 - PF5

Stored in RAM > VP3 > PF2

= Issue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2021]

ievRojzan o T T T o e A S T = e

11592

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address
2 VPN = (virtualAddress & VPN_MASK) >> SHIFT
3
4 // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // check if process can access the page
11. if (PTE.valid == False)
12. RaiseException (SEGMENTATION_FAULT)
I else if (CanAccess(PTE.ProtectBits) == False)
14. RaiseException (PROTECTION_FAULT)
i15s else
16. // Access is ok: form physical address and fetch it
17. offset = VvirtualAddress & OFFSET_MASK
18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
TCS5422: Operating Systems [Spring 2021]
L Ay) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome L1593

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array([1000];

e {i=0F i< A6
array(i] =

= Assembly equivalent:

0x1024 movl $0x0, (%edi, $eax, 4)
0x1028 incl $eax

0x102¢c cmpl $0x03e8, veax
0x1030 jne 0x1024

TCS5422: Operating Systems [Spring 2021]

ievRogzran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

L15.94

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

® Locations: 1224
= Page table s} o o o o un g
= Array Page Table[1] u4 g
= Code 074 %

1024
= 50 accesses 2 40100 R o
< g
for 5 loop % 40050 282 F
. . < <

iterations 40000 7232

4

19 o
4146 I
S

4096

Memory Access
TCS5422: Operating Systems [Spring 2021]
hiav20 izt Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1595

Slides by Wes J. Lloyd

Consider a 4GB Computer with 4KB (4096 byte)
pages. How many pages would fit into physical
memory?

2432 [2A20 =212 pages
2432 /2712 = 2720 pages
2A32 /2116 =2/716 pages
2A32 [2A8 = 2724 pages
None of the above

] |

L15.16

TCSS 422 A — Spring 2021 5/20/2021
School of Engineering and Technology

| | | | |
“For the 4GB computer example, how many bits are” “For the 4GB computer example, how many bits are"
required for the VPN? available for page status bits?
24 VPN bits (indexes 32-12 VPN bits
2124 locations) =20 status bits
16 VPN bits (indexes 32-24 VPN bits
2116 locations) = 8 status bits
20 VPN bits (indexes 32-16 VPN bits
2720 locations) =16 status bits
12 VPN bits (indexes 32-20VPN bits
2712 locations) =12 status bits
None of the
None of the above above
|} May 20, 2033, TCSS@ZZ Operating Systems LSprmg 2021] L5 [} N ("}
u Yoy 7 0 | | |
I- .I l. -I
For the 4GB computer, how much space does this For the 4GB computer, how many page tables (for
page table require? (number of page table entries x user processes) would fill the entire 4GB of memory?

size of page table entry)

4GB/ 16 KB=65,536
2720 entries x 4b =4 MB
4GB /64 MB =256
2712 entries x 4b = 16 KB

. 4GB/ 256 KB=16,384
2716 entries x 4b =256 KB

2A24 entries x 4b = 64 MB 4GB/ 4MB = 1,024

None of the above None of the above

[} May 20, 2033 TCSS422: Operating Systems [Spring 2021] Lism n 5 n
™ FS g o

PAGING SYSTEM EXAMPLE

QUESTIONS

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

115.101

May 20, 2021 TCS$4|22; Operating Systems [Spring 2021]

School o Technology, y i Tacoma

Slides by Wes J. Lloyd L15.17

