TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Concurrency Problems,
Memory Virtualization
with Segments

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Mayitsg2uze School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2

® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.2

Lioyd

5/18/2021

L14.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCS5422 A 5 Assignments

Soring 2021
17 T
Home
Announcernents
Zoom * Upcoming Assignments
]
ke «¢ TCSS422- Online Daily Feedback Survey - 4/1
¥ Available until Apr'S at 11:59pm | Due Apr 5at10pm | /1 pts
Dlicriiccinne Psiw N -~ haelemeniimed sinmesss
TCSS422: Computer Operating Systems [Spring 2021]
Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma L14.3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 6 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
1 2 3 4 5 6 7 8 9 10
slow Just Right Fast
TCSS422: Computer Operating Systems [Spring 2021]
by e 200 School of Engineering and Technology, University of Washington - Tacoma L14.4

Lloyd

5/18/2021

L14.2

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (51 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.32 ({ - previous 7.77)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.63 ({ - previous 5.81)

TCSS422: Computer Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.5

May 18, 2021

FEEDBACK

® Could you review how execution trace table shows
different results with while loop(condition)?

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.6

May 18, 2021

Slides by Wes J. Lloyd L14.3

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

EXECUTION TRACE: ISSUE: NO WHILE
1 PRODUCER, 2 CONSUMERS, 1 CONDITION
T State Te2 State T, State Count Comment
= Two threads el Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready pl Running 0
C1 /p1 o Iock Sleep Ready p2 Running 0
02/p2_ CheCk var Sleep Read! p4 Running 1 Buffer now full
C3/p3' Wa|t Ready Ready p5 Running 1 T4 awoken
C4' get() Eeady Ready p6 Runn!ng il
eady Ready pl Running il
p4_ pUt() Ready Ready p2 Running 1
CS/pS_ Slg nal Ready Read» p3 Sleep 1 Buffer full; sleep
CG/pG' unIOCk Ready o | Running Sleep 1 T, sneaks in ...
Ready £2 Running Sleep l
Ready| c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready c6 Running Ready 0
» c4 Running Ready Ready 0 Oh oh! No data
Mayptsg2021 ggﬁiﬁfﬁf gr:)geiLa:er:’ignzy:;edm‘lf‘eg?wg?oggi,oﬁiliversity of Washington - Tacoma L147

EXECUTION TRACE: ISSUE: 1 CONDITION
WHILE, 1 PRODUCER, 2 CONSUMERS
Ty State T2 State T State Count Comment

cl Running Ready Ready 0
2 Running Ready Ready 0

c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
C1 /p1 - IOCk Sleep c2 Running Ready 0

02/p2_ Check var Sleep c3 Sleep Ready 0 Nothing to get
c3/p3- wait z:eep z:eep ’3; E"””f”g 2

eep cep p unning
04- get() Sleep Sleep pd Running i Buffer now full
p4- pUt() * Ready Sleep p5 Running 1 T, awoken

C5/p5- Slgnal Ready Sleep p6 Running il
06/p6' UnIOCk Ready Sleep pl Running il
Ready Sleep p2 Running 1

Ready Sleep p3 Sleep i Must sleep (full)

» c2 Running Sleep Sleep 1 Recheck condition

c4 Running Sleep Sleep 0 T,; grabs data

» c5 Running Ready Sleep 0 Oops! Woke T,

MaviEe J2021 ;Er?iilzif gr?gei;a;;tignzy:;edm'ligzgggi? fJ:rll]iversity of Washington - Tacoma L14.8

Slides by Wes J. Lloyd L14.4

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

EXECUTION TRACE: ISSUE: 1 CONDITION - 2

WHILE, 1 PRODUCER, 2 CONSUMERS

= T., runs, no data to consume

T State T2 State T, State Count Comment

L_ege_nd (cont)
C1/p1 - IOCk 6 Running Ready Sleep 0
02/p2' CheCk var cl Running Ready Sleep 0
C3/p3- Walt c? Running Ready Sleep 0
c4- get() c3 Sleep Ready Sleep 0 Nothing to get
p4_ put() Sleep c2 Running Sleep 0
CS/pS' Slg nal Sleep £3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.10

Slides by Wes J. Lloyd L14.5

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/13
B Assignment 2
® Quiz 3 - Synchronized Array
® Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
® Chapter 14: The Memory API
® Chapter 15: Address Translation
® Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.11

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
® Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.12

Slides by Wes J. Lloyd L14.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/13

® Assignment 2

® Quiz 3 - Synchronized Array

® Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
® Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.13

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2021]

Magie p2nai School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

5/18/2021

L14.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

NON-DEADLOCK BUGS - 1

m97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

m Desire for automated tool support (IDE)

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.15

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

®m Order violation
= Must consider all variable accesses
= Must know desired order

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021

L14.16

Lloyd

5/18/2021

L14.8

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

DEADLOCK BUGS

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1); lock (L2); —3 | Lock L1
lock (L2); lock(Ll);

®m Both threads can block, unless
one manages to acquire both locks

Wanted by

e Aq pajuepy

Lock L2

Holds

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.17

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.18

Slides by Wes J. Lloyd L14.9

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

REASONS FOR DEADLOCKS

® Complex code

= Must avoid circular dependencies - can be hard to find...
® Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

1 Vector v1,v2;

2 v1.AddAll (v2):

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.19

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

CHclanwart resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.20

Slides by Wes J. Lloyd L14.10

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/13
B Assignment 2
B Quiz 3 - Synchronized Array
® Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
® Chapter 14: The Memory API
® Chapter 15: Address Translation
® Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.21

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

m C pseudo code for CompareAndSwap
® Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new){
2 if(*address == expected){

3 *address = new;

4 return 1: // sHccess

3 }

4]

7

return 0;

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1422

May 18, 2021

Slides by Wes J. Lloyd L14.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

® Recall atomic increment

void AtomicIncrement (int *value, int amount) {
do{
int old = *value:;
twhile(CompareAndsSwap(value, old, old+amount)==0);

[S =S UV SR

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®" When it runs it is ALWAYS atomic (at HW level)

PREVENTION - MUTUAL EXCLUSION - 2

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.23

MUTUAL EXCLUSION: LIST INSERTION

®m Consider list insertion

1 void insert(int value){

2 node_ t * n = malloc(sizeof(node t));
3 assert(n != NULL);

4 n->value = value ;

Ly n->next = head;

6 head = n:

7

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.24

Slides by Wes J. Lloyd

5/18/2021

L14.12

TCSS 422 A — Spring 2021

School of Engineering and Technology

= | ock based implementation

WO - oy s W

void insert (int wvalue) {
node £t * n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value ;

lock(listlock); // begin critical section
n->next = head;

head = n;

unlock(listlock) ; //end critical section

MUTUAL EXCLUSION - LIST INSERTION - 2

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

= Wait free (no lock) implementation

O J o) Ul WM

void insert (int wvalue) {

node t *n = malloc(sizeof(node t));

assert (n != NULL);

n->value = value;

do {

n->next = head;

} while (CompareAndSwap (&head, n->next, n));

}

= Assign &head to n (nhew node ptr)
= Only when head = n->next

MUTUAL EXCLUSION - LIST INSERTION - 3

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

Slides by Wes J. Lloyd

5/18/2021

L14.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

Mutual Exclusion | Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Condition Description

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait

resources that are being requested by the next thread in the chain

There exists a circular chain of threads such that each thread holds one more

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.27

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
® Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock (L1);
lock (L2) ;

[E - UV SR

unlock (prevention):;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

® Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

® Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.28

Slides by Wes J. Lloyd

5/18/2021

L14.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.29

PREVENTION - NO PREEMPTION

=" When acquiring locks, don’t BLOCK forever if
unavailable...

®mpthread_mutex_trylock() - try once
®mpthread_mutex_timedlock() - try and wait awhile

oy
s B NO

= e STOPPING
ANY
= Eliminates deadlocks TIME

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.30

Slides by Wes J. Lloyd

5/18/2021

L14.15

TCSS 422 A — Spring 2021

School of Engineering and Technology

= Fix: add random delay

=Allows one thread to win the
livelock race! " /

®Can lead to livelock

top:
lock(Ll):
if(tryLock(n2) == -1){
unlock(Ll1);
goto top;

oy o W

}

" Two threads execute code in parallel 2>
always fail to obtain both locks

NO PREEMPTION - LIVELOCKS PROBLEM

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

CONDITIONS FOR DEADLOCK

Condition

Mutual Exclusion

Description

Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

No preemption

Resources cannot be forcibly removed from threads that are holding them.

*Circularwait

There exists a circular chain of threads such that each thread holds one more

resources that are being requested by the next thread in the chain

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

Slides by Wes J. Lloyd

5/18/2021

L14.16

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code

= Always acquire locks in same order
“lL1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2...

" Must carry out same ordering through entire
program

May 18, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.33

CONDITIONS FOR DEADLOCK

® |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait : ; :
resources that are being requested by the next thread in the chain
TCSS422: Operating Systems [Spring 2021]
MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma L14.34

Slides by Wes J. Lloyd L14.17

TCSS 422 A — Spring 2021
School of Engineering and Technology

“n

The dining philosophers problem where 5
philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler
=Scheduler knows which locks threads use

m Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

®m Lock requirements of threads:

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.36

Slides by Wes J. Lloyd

5/18/2021

L14.18

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

CPU 2

®ENo deadlock can occur

= Consider:
T1 T2 T3 T4
L1 yes yes yes no
L2 yes yes yes no
TCSS422: Operating Systems [Spring 2021]
Mayils 202 School of Engineering and Technology, University of Washington - Tacoma L14.37

INTELLIGENT SCHEDULING - 3

®m Scheduler produces schedule

® Scheduler must be conservative and not take risks
® Slows down execution - many threads

® There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.38

May 18, 2021

Lloyd

5/18/2021

L14.19

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

® How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

® Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.39

May 18, 2021

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

Magie p2nai School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L14.20

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/13
® Assignment 2
® Quiz 3 - Synchronized Array
® Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
® Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.41

CHAPTER 13:

ADDRESS SPACES

TCSS422: Operating Systems [Spring 2021]

Magie p2nai School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L14.21

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 13: Introduction to memory virtualization
= The address space
= Goals of OS memory virtualization

= Common

= Chapter 14: Memory API

memory errors

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

MEMORY VIRTUALIZATION

® What is memory virtualization?

® This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

Slides by Wes J. Lloyd

5/18/2021

L14.22

TCSS 422 A — Spring 2021
School of Engineering and Technology

Process A

MEMORY VIRTUALIZATION - 2

® Presentation of system memory to each process

® Appears as if each process can access the entire
machine’s address space

® Each process’s view of memory is isolated from others

= Everyone has their own sandbox

Process B Process C

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

E |solation

E Protection

MOTIVATION FOR

MEMORY VIRTUALIZATION

® Easier to program
= Programs don’t need to understand special memory models

= From other processes: easier to code

= From other processes
" From programmer error (segmentation fault)

®m Abstraction enables sophisticated approaches to manage
and share memory among processes

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

Slides by Wes J. Lloyd

5/18/2021

L14.23

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Poor memory utilization
= Little abstraction

OKB

64KB

max

®mLoad one process at a time into memory

EARLY MEMORY MANAGEMENT

Operating System
(code, data, etc.)

Current
Program
(code, data, etc.)

Physical Memory

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.47

processes

® Solution>

MULTIPROGRAMMING

WITH SHARED MEMORY

® Later machines supported running multiple

®m Swap out processes during I/0 waits to
increase system utilization and efficiency

® Swap entire memory of a process to disk
for context switch

® Too slow, especially for large processes

= Leave processes in memory

= Need to protect from errant memory
accesses in a multiprocessing environment

0KB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

S12KB

Operating System
{code, data, etc.)

Free

Process C
{code, data, etc.)

Process B
{code, data, etc.)

Free

Process A
(code, data, etc.)

Free

Free

Physical Memory

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.48

Slides by Wes J. Lloyd

5/18/2021

L14.24

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Easy-to-use
memory for

® Main eleme

=Stack
=Heap

ADDRESS SPACE

abstraction of physical

*Program code

0KB
a process

1KB

2KB
nts:

15KB

16KB

= Example: 16KB address space

Program Code

Heap

l

(free)

T

Stack

Address Space

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.49

® Code
= Program code

® Stack

= Return values

= Heap

= Malloc() new()

= Dynamic storage

ADDRESS SPACE - 2

OKB

1KB

2KB

= Program counter (PC)
= Local variables
= Parameter variables

(for functions)

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.50

Slides by Wes J. Lloyd

5/18/2021

L14.25

TCSS 422 A — Spring 2021
School of Engineering and Technology

ADDRESS SPACE - 3

® Program code

. L OKB
Static size Program Code
1KB
Heap
® Heap and stack 2KB
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends -
®m Addresses are virtual T
= They must be physically mapped by the 0S wE Stack
16KB

Address Space

TCSS422: Operating Systems [Spring 2021]

May 18, 2021

School of Engineering and Technology, University of Washington - Tacoma

L14.51

VIRTUAL ADDRESSING

= Every address is virtual

= 0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){
printf("location of cocde : %p\n", (void *) main);
printf("location of heap : %p\n", (void #*) malloc(l));
ing x = 37

printf(*location of stack : %p\n", (void *) &x);

return x;

= EXAMPLE: virtual.c

TCSS422: Operating Systems [Spring 2021]

May 18, 2021

School of Engineering and Technology, University of Washington - Tacoma

L14.52

Slides by Wes J. Lloyd

5/18/2021

L14.26

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

Address Space

= Qutput from 64-bit Linux: b P
(Text)

- 0x401000
location of code: 0x400686 Data
location of heap: 0x1129420 0cf2000 =

location of stack: Ox7ffe040d77e4 e l

heap
(free)
stack
Ox7ff9ca28000 St]ck

0x7ff9cad3000

TCSS422: Operating Syst Spring 2021
Mayptsg2021 School of Er:):i:':aeler:’igngy::dm‘lf;£h71rt:?t)ggm Un]iversity of Washington - Tacoma I'14'53—|

GOALS OF

OS MEMORY VIRTUALIZATION

® Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

® Protection
= [solation among processes
= OS itself must be isolated

= One program should not be able to affect another
(or the 0S)

TCSS422: Operating Systems [Spring 2021]
MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.54

Slides by Wes J. Lloyd L14.27

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

GOALS - 2

= Efficiency
*=Time
Performance: virtualization must be fast

=Space
Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

m Goals considered when evaluating memory
virtualization schemes

TCSS422: Operating Systems [Spring 2021]

Mayils 202 School of Engineering and Technology, University of Washington - Tacoma

L14.55

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.56

Slides by Wes J. Lloyd L14.28

TCSS 422 A — Spring 2021

School of Engineering and Technology

CHAPTER 14: THE
MEMORY API

TCSS422: Operating Systems [Spring 2021]

Maypsa202d School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 13: Introduction to memory virtualization

= The address space
= Goals of OS memory virtualization

= Chapter 14: Memory API

= Common memory errors

TCSS422: Operating Systems [Spring 2021]

Ly Tk, 240l School of Engineering and Technology, University of Washington - Tacoma

L14.58

Slides by Wes J. Lloyd

5/18/2021

L14.29

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

MALLOC

#include <stdlib.h>

void* malloc(size t size)

® Allocates memory on the heap
E sjze_t unsigned integer (must be +)
m gize size of memory allocation in bytes

= Returns
SUCCESS: A void * to a memory address
FAIL: NULL

sizeof() often used to ask the system how large a given
datatype or struct is

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.59

May 18, 2021

SIZEOF()

®m Not safe to assume int *x = malloc (10 * sizeof (int)):
. . intf (“$d\n”, sizeof(x));
data type sizes using B il il
different compilers, | 4
systems
® Dynamic array of 10 ints int x[10]; ‘
printf (“$d\n”, sizeof(x)):
= Static array of 10 ints [e

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.60

May 18, 2021

Slides by Wes J. Lloyd L14.30

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

FREE()

#include <stdlib.h>

void free(void* ptr)

® Free memory allocated with malloc()
® Provide: (void *) ptr to malloc’d memory

® Returns: nothing

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.61

#include<stdio. h>

What will this code do?

int * set_magic_number_a()

{
int a =53247;
return &a;
}
void set_magic_number_b()
{
int b = 11111;
}
int main(Q)
{
int * X = NULL;
X = set_magic_number_a();
printf("The magic number 1is=%d\n“, *x);
set_magic_number_bQ) ;
printf(“The magic number is=%d\n“, *x);
return 0;
} 62

Slides by Wes J. Lloyd L14.31

TCSS 422 A — Spring 2021
School of Engineering and Technology

{

}

{

#include<stdio.h>

int * set_magic_number_a()

What will this code do?

int a =53247;
return &a; Output:

$./pointer_error

The magic number is=53247

void set_magic_number_b () [e e P E e

int b = 11111;

’ We have not changed *x but
znt main() the value has changed!!
int * x = NULL; Why?

X = set_magic_number_a();
printf("The magic number is=%d\n“, *x);
set_magic_number_b();
printf("The magic number 1is=%d\n“, *x);
return 0;

63

DANGLING POINTER (1/2)

® Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

® The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCSS422: Operating Systems [Spring 2021]

May 18, 2021 L14.64

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/18/2021

L14.32

TCSS 422 A — Spring 2021
School of Engineering and Technology

DANGLING POINTER (2/2)

is generated:

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

BThis is a common mistake - - -

gone “out of scope”

mFortunately in the case, a compiler warning

$ g++ -0 pointer_error -std=c++0x pointer_error.cpp

accidentally referring to addresses that have

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.65

CALLOC()

#include <stdlib.h>

void *calloc(size t num, size t size)

m Allocate “C”lear memory on the heap

® Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
msize t size:size of each block(in bytes)

® Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.66

Slides by Wes J. Lloyd

5/18/2021

L14.33

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size_ t size)

® Resize an existing memory allocation

® Returned pointer may be same address, or a new address
= New if memory allocation must move

" void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

EXAMPLE: realloc.c
EXAMPLE: nom.c

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.67

May 18, 2021

DOUBLE FREE

int *x = (int *)malloc(sizeof(int)):; // allocated
free(x); // free 1

free(x):s // free re

® Can’t deallocate twice
®m Second call core dumps

2B allocated <3 2B freed <y

l Heap i Heap
free (x)

i i free(x) Utidefined
(free) ! _’ (free) i _’
| ! Error

T Stack T Stack

16K8 2KB e— *x 16KB 2KB(invalid) e ay
Address Space Address Space

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.68

May 18, 2021

Slides by Wes J. Lloyd L14.34

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

SYSTEM CALLS

= brk(), sbrk()

® Used to change data segment size (the end of the heap)
® Don’t use these

=" Mmap(), munmap()

®m Can be used to create an extra independent “heap” of memory
for a user program

® See man page

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.69

May 18, 2021

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L14.70

Slides by Wes J. Lloyd L14.35

TCSS 422 A — Spring 2021
School of Engineering and Technology

May 18, 2021

CHAPTER 15: ADDRESS
TRANSLATION

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

® Chapter 15: Address translation
= Base and bounds
= HW and OS Support

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

Slides by Wes J. Lloyd

5/18/2021

L14.36

TCSS 422 A — Spring 2021
School of Engineering and Technology

Relocated Process

Virtual mapping
" 64KB 0KB 0KB
Address space Program Code Operating System
example -
Heap
. e
= Translation: ~
. 32KB
mapping l Code
€a
virtual to heap '
n (allocated
p h ys IcCa I (free) but not in use)
o 48KB Stack
T (not in use)
Stack ’
16KB S ohysical M
Address Space i
TCSS422: Operating Systems [Spring 2021]
Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.73

® OS places p

= Bounds regi
= Stores size

BASE AND BOUNDS

® Dynamic relocation

® Two registers base & bounds: on the CPU

rogram in memory

m Sets base register

[physical address = virtual address + base

ster
of program address space (16KB)

m OS verifies that every address:

‘ 0 < virtual address < bounds J

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

Slides by Wes J. Lloyd

5/18/2021

L14.37

TCSS 422 A — Spring 2021

School of Engineering and Technology

Slides by Wes J.

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax | N e
1KB 135|movl $eax,0x0 (tebx)
= Base = 32768 e Program Cede
= Bounds =16384 sk e
® Fetch instruction at 128 (virt addr) 7 4K8
= Phy addr = virt addr + base reg l
= 32896 = 128 + 32768 (base) D
= Execute instruction -
Tee
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x... stack
® Bounds register: terminate process if T
= ACCESS VIOLATION: Virtual address > bounds reg 1ake
15KB |s000 INtX
{ physical address = virtual address + base 16KB Stack

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.75

MEMORY MANAGEMENT UNIT

= MMU

= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

® Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address

Addre

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)
MaviEe J2021 ;Er?iilzif gr?gei;ac:(ie':'ignzy:;edm'ligz:?fgio fJ:rll]iversity of Washington - Tacoma L1476
Lloyd

5/18/2021

L14.38

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

DYNAMIC RELOCATION OF PROGRAMS

® Hardware requirements:

| Requiements | HWsupport ______

Privileged mode
Base / bounds registers

Translate virtual addr; check if in
bounds

Privileged instruction(s) to
update base / bounds regs

Privileged instruction(s)
to register exception handlers

Ability to raise exceptions

CPU modes: kernel, user
Registers to support address translation
Translation circuitry, check limits

Instructions for modifying base/bound
registers

Set code pointers to OS code to handle faults

For out-of-bounds memory access, or
attempts to access privileged instr.

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

OS SUPPORT FOR MEMORY

VIRTUALIZATION

® For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

= When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers

Function pointers set at OS boot time

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

Lloyd

5/18/2021

L14.39

TCSS 422 A — Spring 2021
School of Engineering and Technology

0S: WHEN PROCESS STARTS RUNNING

®m OS searches for free space for new process
= Free list: data structure that tracks available memory slots

The OS lookup the free list

Free list

16KB

48KB

0KB

16KB

Operating System

32KB

48KB

64KB

(not in use)

Code

Heap

(allocated but not in use)

Stack

(not in use)

Physical Memory

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.79

Slides by Wes J.

OS: WHEN PROCESS IS TERMINATED

® OS places memory back on the free list

OKB
16KB
16KB
¢ 32k8
48KB
43KB
64K8

Operating System

(not in use)

Process A

(not in use)

Physical Memory

Free list OKB

16KB

16KB

lv 32kB

32KB

¢ 48KB

48KB 64KB

Operating System

(not in use)

(not in use)

(not in use)

Physical Memory

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

Lloyd

5/18/2021

L14.40

TCSS 422 A — Spring 2021

School of Engineering and Technology

0S: WHEN CONTEXT SWITCH OCCURS

® 0S must save base and bounds registers

= Saved to the Process Control Block PCB (task_struct in Linux)

OKB Context Switching KB
Operating System _— Operating System
16KB 16KB
(not in use) base (not in use)
32k8 <=1 32KB 32k8
Process A
Currently Running bounds brocess A
48KB 48kB 48KB
Bioiess s Process B
Currently Running
64KB 64KB
Physical Memory Physical Memory

Process A PCB

base : 32KB

bounds : 48KB

base

bounds

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.81

S C0 S e

DYNAMIC RELOCATION

® 0S can move process data when not running

OS deschedules process from scheduler
OS copies address space from current to new location

OS updates PCB (base and bounds registers)

OS reschedules process

= Process doesn’t know it was even moved!

® When process runs new base register is restored to CPU

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.82

Slides by Wes J. Lloyd

5/18/2021

L14.41

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

.'Consider a 64KB computer the loads a program. The'.

BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory
address translation for a virtual address of 6000 ?

34768
38768
32769
36864
Out of bounds

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

OBJECTIVES - 5/18

® Questions from 5/13
= Assignment 2
® Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
® Chapter 13: Address Spaces
= Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation

May 18, 2021 : Operating Systems [Spring
)

School of Engineering and Technology, University of Washington - Tacoma L14.84

Lloyd

5/18/2021

L14.42

TCSS 422 A — Spring 2021

School of Engineering and Technology

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Spring 2021]

Maypsa202d School of Engineering and Technology, University of Washington -

BASE AND BOUNDS INEFFICIENCIES

0KB

® Address space 1KB
. . e 2KB

= Contains significant unused memory B

= |s relatively large o

= Preallocates space to handle stack/heap growth s

® Large address spaces

= Hard to fit in memory

B How can these issues be addressed?

14KB
15KB
16KB

Program Code

Heap

(free)

Stack

TCSS422: Operating Systems [Spring 2021]

Ly Tk, 240l School of Engineering and Technology, University of Washington - Tacoma

L14.86

Slides by Wes J. Lloyd

5/18/2021

L14.43

TCSS 422 A — Spring 2021

School of Engineering and Technology

MULTIPLE SEGMENTS

" Memory segmentation

® Each segment can placed separately

® Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Track base and bounds for each segment (registers)

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.87

SEGMENTS IN MEMORY

OKB

16KB

32KB

48KB

64KB

® Consider 3 segments:

Operating System

4

Segment Base Size

(not in use)

Stack Code
{not in use) Heap

Code

Heap Stack
(not in use)

Physical Memory

32K 2K
34K 2K
28K 2K

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.88

Slides by Wes J. Lloyd

5/18/2021

L14.44

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ADDRESS TRANSLATION: CODE SEGMENT

(physical address = of fset + base ‘

® Code segment - physically starts at 32KB (base)
® Starts at “0O” in virtual address space

Segment Base Size

Bounds check:

Prog

%Mm

(not in use)

Virtual Address Space Physical’Address Space

or 32868

wammm s virtual address within 2KB Bl
add ress space? address

TCSS422: Operating Systems [Spring 2021]

iaypie2021 School of Engineering and Technology, University of Washington - Tacoma

L14.89

ADDRESS TRANSLATION: HEAP

‘ Virtual address + base is not the correct physical address.

® Heap starts at virtual address 4096

= The data is at 4200

® Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Segment Base Size
Heap 34K 2K
(not in use)
32kB
Code
4KB 34KB 104 + 34K or 34920
4200| aata Heap [is the desired
6KB HTF 36KB physical address
(not in use)
Address Space

Physical Memory

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.90

Lioyd

5/18/2021

L14.45

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SEGMENTATION FAULT

®m Access beyond the address space

® Heap starts at virtual address: 4096
® Data pointer is to 7KB (7168)

® |s data pointer valid?

®m Heap starts at 4096 + 2 KB seg size = 6144
= Offset= 7168 > 4096 + 2048 (6144) T e
6KB i
;E: (not in use)
Address Space

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.91

SEGMENT REGISTERS

m Used to dereference memory during translation

\ I J

I I
Segment Offset

13 A2 40 18, 9 8 " st 5 4 F 2 s D

® First two bits identify segment type
® Remaining bits identify memory offset
® Example: virtual heap address 4200 (01000001101000)

Segment bits

s S s i 1 I F A - S - L O P
| a || 0f ko | de | o eek| | E | ol | 0 | 0| © | Code
Heap
\ T A T l Stack
Segment Offset -

00
01
10
11

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.92

Lloyd

5/18/2021

L14.46

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SEGMENTATION DEREFERENCE

// get top 2 bits of 14-bit VA

// now get offset
offset = VirtualAddress & OFFSET MASK
if (offset >= Bounds[Segment])
RaiseException (PROTECTION FAULT)
else
PhysAddr = Base [Segment] + Offset
Register = AccessMemory(PhysAddr)

W o=l oy e W

Segment = (VirtualAddress & SEG_MASK) >> SEG SHIFT

= VIRTUAL ADDRESS = 01000001101000 (on heap)
® SEG_MASK = 0x3000 (11000000000000)
® SEG_SHIFT = 01 > heap (mask gives us segment code)

® OFFSET_MASK = OxFFF (00111111111111)

® OFFSET = 000001101000 = 104 (isolates segment offset)

= OFFSET < BOUNDS : 104 < 2048

May 18, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.93

STACK SEGMENT

= Stack grows backwards (FILO)
®= Requires hardware support:

= Direction bit: tracks direction segment grows

(not in use)
26KB T , . B
Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
(not in use) Code 32K 2K al
Heap 34K 2K 1
Stack 28K 2K 0

Physical Memory

TCSS422: Operating Systems [Spring 2021]

May 18, 2021

School of Engineering and Technology, University of Washington - Tacoma

L14.94

Lloyd

5/18/2021

L14.47

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

SHARED CODE SEGMENTS

®m Code sharing: enabled with HW support

® Supports storing shared libraries in memory only once
® DLL: dynamic linked library

® .so (linux): shraed object in Linux (under /usr/lib)

® Many programs can access them

® Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.95

May 18, 2021

Consider a program with 2KB of code, a 1 KB stack,
and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32 KB
56 KB
24 KB
4 KB
0 KB

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Lloyd

5/18/2021

L14.48

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

SEGMENTATION GRANULARITY

m Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
"Heap segment
=Stack segment

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.97

May 18, 2021

SEGMENTATION GRANULARITY - 2

® Fine-grained
B Manage memory as list of segments

" Code, heap, stack segments composed | :
of multiple smaller segments ‘

B Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.58

May 18, 2021

Slides by Wes J. Lloyd L14.49

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MEMORY FRAGMENTATION

® Consider how much free space?

Not compacted

= We’ll say about 24 KB Bke
8KB | Operating System
® Request arrives to allocate a 20 KB heap 16KB
segment (not in use)
24KB
Allocated
® Can we fulfil the request for 20 KB of 2K
contiguous memory? — —
48KB ’
(not in use)
56KB
Allocated
64KB
TCSS422: Operating Systems [Spring 2021]
Mayils 202 School of Engineering and Technology, University of Washington - Tacoma L14.99

COMPACTION

® Supports rearranging memory Compacted
OKB
= Can we fulfil the request for 20 KB of 8KB | Operating System
contiguous memory?
16KB
® Drawback: Compaction is slow S
= Rearranging memory is time consuming Allocated
* 64KB is fast 22kp
= 4GB+ ... slow 40KB
= Algorithms: el
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most shug segment for the request
= Others: worst fit, first fit... (in future chapters) GIEE
TCSS422: Operating Systems [Spring 2021]
MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma L14.100

Lloyd

5/18/2021

L14.50

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

T

L rgqgﬂﬁ”” J[“

B

CHAPTER 17: FREE
SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2021]

Mavi(e 202l School of Engineering and Technology, University of Washington - o L14.101

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Spring 2021]

. N . . . L14.102
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021

Slides by Wes J. Lloyd L14.51

TCSS 422 A — Spring 2021

School of Engineering and Technology

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

® What are the time and space overheads of alternate
approaches?

® What strategies can be used to minimize fragmentation?

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.103

FREE SPACE MANAGEMENT

® Management of memory using

® Only fixed-sized units
= Easy: keep a list
= Memory request = return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.104

Slides by Wes J. Lloyd

5/18/2021

L14.52

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

FRAGMENTATION

® Consider a 30-byte heap

30-byte heap: | free | used | free |
0 10 20 30

® Request for 15-bytes

s addr:0 addr:20
free listt. head — 1.,.10 —® 1en:10 — ™ NULL

® Free space: 20 bytes

= No available contiguous chunk = return NULL

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 114.105

May 18, 2021

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

® Internal: Jlost space - OS can’t compact
= OS returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
=" Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.106

May 18, 2021

Lloyd

5/18/2021

L14.53

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

ALLOCATION STRATEGY: SPLITTING

® Request for 1 byte of memory: malloc(1)

30-byte heap: | free | used | free |
0 10 20 30

5 addr:0 addr:20
free list. | head —» ...19 ™ jen:10 " NULL

® OS locates a free chunk to satisfy request
® Splits chunk into two, returns first chunk

30-byte heap: | free | used [| free |
0 10 20 21 30

e addr:0 addr:21
free list head —* 1.,.990 — 1en:o — > NULL

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 114.107

May 18, 2021

ALLOCATION STRATEGY: COALESCING

® Consider 30-byte heap
® Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr: 20

head len:10 Len:10 len:10

—> NULL

® Request arrives: malloc(30)
® SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr:0

head len: 30

—> NULL

= Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.108

May 18, 2021

Lloyd

5/18/2021

L14.54

TCSS 422 A — Spring 2021

School of Engineering and Technology

ptr

MEMORY HEADERS

® free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

® Header block
= Small descriptive block of memory at start of chunk

j|~ The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

May 18, 2021

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.109

hptr —>

ptr —»

MEMORY HEADERS - 2

size: 20
magic: 1234567 typedef ;truct‘ __header_t {
int size;
int magic:
The 20 bytes } header t;
returned to caller

A Simple Header

Specific Contents Of The Header

® Contains size
® Pointers: for faster memory access
B Magic number: integrity checking

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.110

Slides by Wes J. Lloyd

5/18/2021

L14.55

TCSS 422 A — Spring 2021

School of Engineering and Technology

MEMORY HEADERS - 3

® Size of memory chunk is:
® Header size + user malloc size
® N bytes + sizeof(header)

® Easy to determine address of header

void free(void *ptr) ({

header t *hptr = (void *)ptr - sizeof (header_ t):

TCSS422: Operating Systems [Spring 2021]

Mayptsg2021 School of Engineering and Technology, University of Washington - Tacoma

L14.111

THE FREE LIST

® Simple free list struct

typedef struct _ node_t {
int size;
struct _ node t *next;

} nodet_t:

® Use mmap to create free list
®m 4kb heap, 4 byte header, one contiguous free chunk

// mmap () returns a pointer to a chunk of free space

node t *head = mmap (NULL, 4096, PROT READ|PROT WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0):

head->size - sizeof (node_t):

96
head->next NULL;?

TCSS422: Operating Systems [Spring 2021]

MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma

L14.112

Slides by Wes J. Lloyd

5/18/2021

L14.56

5/18/2021

TCSS 422 A — Spring 2021
School of Engineering and Technology

FREE LIST - 2

® Create and initialize free-list “heap”
// mmap () returns a pointer to a chunk of free space

node_t *head = mmap (NULL, 4096, PROT READ|PROT WRITE,
MAP ANOW|MAP PRIVATE, -1, 0):

- sizeof(node t):

head->size = 409%¢
head->»next = NULL;

®= Heap layout:
[virtual address: 16KB]
header: size field

size: 4088

head —>| next: 0 header: next field(NULL is 0)

b the rest of the 4KB chunk

TCSS422: Operating Systems [Spring 2021]
Mayils 202 School of Engineering and Technology, University of Washington - Tacoma 114.113

FREE LIST: MALLOC() CALL

® Consider a request for a 100 bytes: malloc(100)

®m Header block requires 8 bytes
= 4 bytes for size, 4 bytes for magic number

m Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk A Heap : After One Allocation :
head ——> T
size: 4088 S8 i
magic: 1234567
ptr —> 2
the rest of e FI.rSt- block the 100 bytes now allocated
the 4KB chunk is used
head — E
size: 3980
next: 0
. the free 3980 byte chunk
TCSS422: Operating Systems [Spring 2021]
MaviEe J2021 School of Engineering and Technology, University of Washington - Tacoma L14.114

Slides by Wes J. Lloyd L14.57

TCSS 422 A — Spring 2021
School of Engineering and Technology

= 16708

® Addresses of chunks

m Start=16384
+ 108 (end of 15t chunk) size 100
+ 108 (end of 2" chunk) sptr
+ 108 (end of 3" chunk) block

FREE LIST: FREE() CALL

magic: 1234567

magic: 1234567

size: 100
magic: 1234567

head —>

size: 3764
next: 0

S By kit { size: 100 [virtual address: 16KB]

100 bytes still allocated

Free this 100 bytes still allocated
(but about to be freed)

a5%] 100 bytes still allocated

S The free 3764-byte chunk

Free Space With Three Chunks Allocated

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.115

® Free(sptr)

= 16492

® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

= addr - sizeof(node_t)

®m Actual start of chunk #2

FREE LIST:

FREE() CHUNK #2

size: 100
magic: 1234567

head

[virtual address: 16KB]

ae 100 bytes still allocated

magic: 1234567

size: 100
xt: 16708
" Free chunk #2 - sptr sptr —>1°
Block (now a free chunk of
® Sptr = 16500 Now Free memory)
size: 100

G 100 bytes still allocated

cz The free 3764-byte chunk

size: 3764
next: 0

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.116

Slides by Wes J. Lloyd

5/18/2021

L14.58

TCSS 422 A — Spring 2021
School of Engineering and Technology

" Free(16392)
" Free(16608)

out of order

= Now free remaining chunks:

FREE LIST- FREE ALL CHUNKS

[virtual address: 16KB]

= External fragmentation
= Free chunk pointers

®m Coalescing of next
pointers is needed

= Walk back 8 bytes for actual
start of chunk

S size: 10 |[«—m
i next. 16492
e (now free)
size: 100 | «—————
next: 16708
. (now free)
head, —» size: 100
next: 16384
wes (now free)
size: 3764 |«
next: 0
i The free 3764-byte chunk

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.117

® sbrk(), brk()

GROWING THE HEAP

(not in use)
Heap Heap
(not in use)

Address Space

® Start with small sized heap
® Request more memory when full

break

Segmented heap
(not in use)
Heap Heap
sbrk()‘,'
y
break T N __‘ (not in use)
\\.\\\
Address Space ., Heap

Physical Memory

May 18, 2021

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.118

Slides by Wes J. Lloyd

5/18/2021

L14.59

TCSS 422 A — Spring 2021
School of Engineering and Technology

Slides by Wes J.

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Spring 2021]
Mayils 202 School of Engineering and Technology, University of Washington - Tacoma 114.119

EXAMPLES

® Allocation request for 15 bytes

head > 10 > 30

> 20 > NULL
® Result of Best Fit
head > 10 > 30 > 3 > NULL
® Result of Worst Fit
head > 10 > 15 > 20 > NULL
May 18, 2021 Rl e e

Lloyd

5/18/2021

L14.60

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L4121

May 18, 2021

SEGREGATED LISTS

® For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

® Manage as segregated free lists
® Provide object caches: stores pre-initialized objects

® How much memory should be dedicated for specialized
requests (object caches)?

® |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L4122

May 18, 2021

Slides by Wes J. Lloyd L14.61

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

BUDDY ALLOCATION

® Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

®m Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.123

May 18, 2021

BUDDY ALLOCATION - 2

®m Buddy allocation: suffers from internal fragmentation

m Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.124

May 18, 2021

Slides by Wes J. Lloyd L14.62

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L14.63

