TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

Concurrency Problems,
Memory Virtualization
with Segments

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Maviisj2c20 School of Engineering and Technology, University of Washington [fll Tacoma

5/18/2021

OBJECTIVES - 5/18

| = Questlons from 5/13 |
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021

School of Engineering and Technology, University of Washington - Tacoma L2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021

Home
Announcements
- + Upcoming Assignments
Sylbhis | < TCSS 422 - Online Daily Feedback Survey - 4/1 |
: Avallable unti Ar 33t 11:59pm | Due Apr 3 3t10pm. | 71 pts
Dicriiccinne o Y eimsas
v B

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 ospts
Onascale of 1to 10, p ify your perspecti in today’s
class:

1 2 3 a4 s 6 7 8 9 10

Wosely Equal Hostly

Review To e New and Review Hew to He
Question 2 05pts

Please rate the pace of today’s class:

TCSS422: Computer Operating Systems [Spring 2021]
Ly e 2 School of Engineering and Technology, University of Washington - Tacoma L144

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (51 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.32 ({ - previous 7.77)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.63 ({ - previous 5.81)

May 18, 2021 TCS5422: Computer Operating Systems [Spring 2021]

e uas

Tacoma

FEEDBACK

= Could you review how execution trace table shows
different results with while loop(condition)?

May 18, 2021 TC55422: Operating Systems [Spring 2021]

School of Technology, University of Washington - Tacoma L6

Slides by Wes J. Lloyd

L14.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

EXECUTION TRACE: ISSUE: NO WHILE

1 PRODUCER, 2 CONSUMERS, 1 CONDITION

5/18/2021

Ty | State [T, | State |T, | State |Count Comment
= Two threads ¢l | Running Ready Ready 0
2 | Running Ready Ready 0
» 3| Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Running 0
c1 /P1 - lock Sleep Ready p2 | Running 0
c2/p2- check var Sleep Read) p4 | Running 1 Buffer now full
c3/p3- wait Ready Ready | pS | Running 1 T, awoken
c4- get() :ea:y Ready | p6 | Running 1
eady Ready | pl | Running i
p4- put() Ready Ready | p2 | Running 1
c5/p5- signal Ready Ready» p3 Sleep 1 Buffer full; sleep
c6/p6- unlock Readyl<l | Running Sleep 1 7,y sneaks in ...
Ready | c2 | Running Sleep 1
Read c4 | Running Sleep 0 ..and grabs data
Ready | <5 | Running Ready 0 7, awoken
Read 6 | Running Ready 0
» 4 | Running Ready Ready 0 Oh oh! No data

May 18, 2021 ‘ TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma ‘ L4z

EXECUTION TRACE: ISSUE: 1 CONDITION
WHILE, 1 PRODUCER, 2 CONSUMERS

Ty | State |T,| state |7, | state |Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1/p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
c3/p3_ Wait z:eep z:eep p; Eunmng (0)
e e unnin
c4- get() Slees S\ee:j 24 Runmn: 1 Buffer now full
p4- put() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 7., grabs data
* 5 | Running Ready Sleep 0 Oops! Woke T,
e o e ks e T uss ‘

EXECUTION TRACE: ISSUE: 1 CONDITION - 2
WHILE, 1 PRODUCER, 2 CONSUMERS

OBJECTIVES - 5/18

= T, runs, no data to consume

Ta| state |r,| state |7, | state |cCount| Comment

Legend - - - - - : oty
c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait 2 | Running Ready Sleep 0
c4- get() =) Sleep Ready Sleep 0 Nothing to get
p4- put() S:eep <2 | Running Sleep 0
¢5/p5- signal Sleep! 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Spring 2021]

el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

[e

= Questions from 5/13
|I Assignment 2 |

= Quiz 3 - Synchronized Array

= Tutorial 2 - Pthread, locks, conditions tutorial

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

4.
School of Engineering and Technology, University of Washington - Tacoma L0

OBJECTIVES - 5/18

OBJECTIVES - 5/18

= Questions from 5/13
= Assignment 2
| = Quiz 3 - Synchronized Array |
= Tutorial 2 - Pthread, locks, conditions tutorial

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021] e

School of Engineering and Technology, University of Washington - Tacoma

= Questions from 5/13

= Assignment 2

= Quiz 3 - Synchronized Array

|I Tutorlal 2 - Pthread, locks, condltlons tutorlal |

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

TCS5422: Operating Systems [Spring 2021]
eyl 2r2n Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

ua12

Slides by Wes J. Lloyd

L14.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

OBJECTIVES - 5/18

= Questions from 5/13
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
| = Non-deadlock concurrency bugs |
= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation

TCS5422: Operating Systems [Spring 2021]
el e e Ty o s oy Uty T - TR

114.13

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2021]

paviisganad School of Engineering and Technology, University of Washington -

NON-DEADLOCK BUGS - 1

®97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

14.15

May 18, 2021 11416

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of Washi Tacoma

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock(L1); lock (L2); —_—
lock (L2); lock(Ll);

= Both threads can block, unless
one manages to acquire both locks

Wanted by

@ Aq payuem

|

Lock L2

Holds

Lock L1

@

OBJECTIVES - 5/18

= Questions from 5/13

= Assignment 2

= Quiz 3 - Synchronized Array

= Tutorial 2 - Pthread, locks, conditions tutorial

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

I = Deadlock causes I

= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

Technology, ity i Tacoma

114.17

May 18, 2021 TCS5422: Operating Systems [Spring 2021] a8

school of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L14.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design
= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

5/18/2021

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

14.19

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
285 P o T T T o e A S T = e 1420

OBJECTIVES - 5/18

= Questions from 5/13
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention |

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation
= Chapter 16: Segmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L2l

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected) {

3 *address = new;
4 return 1; //

5

6

i

TCS5422: Operating Systems [Spring 2021]

285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

1422

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

AtomicIncrement (int *value, int amount)

int old = *value;
}while (CompareAndswap (value, old, old+amount)==0);:

e wo e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2021]

el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11423

Slides by Wes J. Lloyd

MUTUAL EXCLUSION: LIST INSERTION

® Consider list insertion

r0id insert (int value){
node t * n = malloc(sizeof (node_t)):
assert(n
n->valu
n->next = head;
head =n;

S me wo e

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

11424

L14.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

void insert (int value){
node t * malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
lock (listlock) ; begin critical section
n->next = head;
head =n;
unlock (listlock) 7

e

5/18/2021

TCS5422: Operating Systems [Spring 2021]
el AT o T B i oy ATt A T T

11425

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int value) {
node_t *n = malloc(sizeof (node t));
assert (n != NULL);

n->value = value;
{
n->next = head;
} (CompareAndSwap (shead, n->next, n));

PN

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS5422: Operating Systems [Spring 2021]
285 P o T T T o e A S T = e

114.26

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome La27

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention);
2 lock(wl):

3 lock(n2);
4
5

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma L1428

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Descripti

n

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

»No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1429

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

mpthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
2 lock(Ll); N 0
3 if(trylock(L2) == -1){
4 unlock(Ll);
5 STOPPING
6 i

= Eliminates deadlocks TIME

TCSS422: Operating Systems [Spring 2021]
eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 11430 ‘

Slides by Wes J. Lloyd

L14.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:

lock(L1)

if (tryLock(L2) == -1){
unlock(Ll) }
goto tops

s

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L3t

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

5/18/2021

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

*C\'r:u\arwa\'t

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma L1432

‘ May 18, 2021

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

‘ May 18, 2021 ‘ TCSS422: Operating Systems [Spring 2021] a3

School of Engineering and Technology, University of Washington - Tacoma

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wart resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 11434

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

EConsider a smart scheduler
=Scheduler knows which locks threads use

® Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

® Lock requirements of threads:

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

11436

Slides by Wes J. Lloyd

L14.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

vt [

CPU 2

= No deadlock can occur

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

= Consider:
L1 yes yes yes no
| L2 ‘ yes ‘ yes | yes ‘ no ‘
May 18, 2021 TCSS422: Operating Systems [Spring 2021] 1437
Bt hool of Engineeri inology, University i Tacoma §

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

May 18, 2021 11438

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.
= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

11439

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

WE WILL RETURN AT
4:50PM

TCSS422: Operating Systems [Spring 2021]

avsizo2y School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Questions from 5/13
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
| = Chapter 13: Address Spaces |
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation

May 18, 2021 TCS5422; Operating Systems [Spring 2021] el

school of Technology, ity ington - Tacoma

CHAPTER 13:

ADDRESS SPACES

TCSS422: Operating Systems [Spring 2021]

avsizo2y School of Engineering and Technology, University of Washington -

Slides by

Wes J. Lloyd

L14.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

5/18/2021

TCS5422: Operating Systems [Spring 2021]

el e o T B s oy Tty A T = TRy

L14.43

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

=When available RAM was low

= Less common recently

TCS5422: Operating Systems [Spring 2021]

285 P o T T T o e A S T = e

L1444

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox

Process A

Process B Process C

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

MOTIVATION FOR
MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

TCS5422: Operating Systems [Spring 2021]

285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

L14.46

EARLY MEMORY MANAGEMENT

= Load one process at a time into memory
= Poor memory utilization oK
uLittle abstraction

Operating System
(code, data, etc.)

64KB

Current
Program
(code, data, etc)

Physical Memory

TCS5422: Operating Systems [Spring 2021]

el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

L14.47

MULTIPROGRAMMING
WITH SHARED MEMORY

= Later machines supported running multiple okB

processes e I
= Swap out processes during I/0 waits to Fraa
increase system utilization and efficiency 128k8 s
= Swap entire memory of a process to disk 102 |(code: data,etc)
Process B

for context switch
= Too slow, especially for large processes

(code, data, etc.)
256KB

Free
320KB b A
. rocess
= Solution> (code, data, etc)
. 384KB
= Leave processes in memory Froe
448KB
= Need to protect from errant memory e

512KB

accesses in a multiprocessing environment Physical Memory

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

L14.48

Slides by Wes J. Lloyd

L14.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

ADDRESS SPACE

= Easy-to-use abstraction of physical

=Example: 16KB address space

memory for a process Program Code
1KB
Heap
. 2KB
= Main elements: l
=Program code o
=Stack
: T
Heap 15KB
Stack
16KB
Address Space

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

L14.49

ADDRESS SPACE - 2

= Code
= Program code L Program Code
K8
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
fre
= Parameter variables -
= Return values (for functions) T
15KB
= Heap Stack
16KB

= Dynamic storage
= Malloc() new()

Address Space

TCS5422: Operating Systems [Spring 2021]

285 P o T T T o e A S T = e

114,50

ADDRESS SPACE - 3

= Program code

. - 0KB
Static size Program Code
1KB
Heap
= Heap and stack 2B
= Dynamic size l
= Grow and shrink during program execution ‘
= Placed at opposite ends -
= Addresses are virtual T
15k8
= They must be physically mapped by the 0S Stack
16k8
Address Space

TCS5422: Operating Systems [Spring 2021]

el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11451

VIRTUAL ADDRESSING

= Every address is virtual
= 0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int argec, char *argv([]){

*) main);
*) malloc(l));

printf("location of code : $p\n", (
printf("location of heap : $p\n", (
int x = 3;

printf("location of stack : $p\n", (void *) &x);

*EXAMPLE: virtual.c

TCS5422: Operating Systems [Spring 2021]

285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

Las2

Address Space

= Qutput from 64-bit Linux: i Code
- 0x401000 o)
location of code: 0x400686 Data
location of heap: 0x1129420 0xcf2000 Haap;

location of stack: 0x7ffe040d77e4 ot i
heap
(free)
stack
0x7fff9ca28000 Stack

f9ca49000
TCSS422: Of ing Sy [Spring 2021]
aviLezzt School of s:;::e"r?ngv::m:cnz?\fgw University/cfWeshingtonTecome ‘ L 53T

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency

= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the

scenes

= Protection
= |solation among processes
= 0S itself must be isolated
=One program should not be able to affect another
(or the 0S)

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

a4

Slides by Wes J. Lloyd

L14.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Efficiency
=Time
Performance: virtualization must be fast

=Space

Virtualization must not waste space
Consider data structures for organizing memory

= Goals considered when evaluating memory
virtualization schemes

Hardware support TLB: Translation Lookaside Buffer

5/18/2021

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri inology, University i Tacoma

114555

OBJECTIVES - 5/18

= Questions from 5/13
= Assignment 2
= Quiz 3 - Synchronized Array
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
| = Chapter 14: The Memory API |
= Chapter 15: Address Translation
= Chapter 16: Segmentation

TCSS422: Operating Systems [Spring 2021]
‘ 285 P e BT T o Uy i = e

L1456

CHAPTER 14: THE
MEMORY API

TCSS422: Operating Systems [Spring 2021]

Mavisgzn2e School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

TCS5422: Operating Systems [Spring 2021]
e

285 P Sehool o TechnolosyiUniversity cfWeshinatoniTecoms

L1458

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
= size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

chnology, ity i Tacoma

11459

Slides by Wes J. Lloyd

= Not safe to assume int *x = malloc (10 * sizeof (int));
A A printf(“$d\n”, sizeof(x)):
data type sizes using
different compilers, \ 4

systems

40

= Dynamic array of 10 iny int x[10]7
printf(“$d\n”, sizeof (x));

= Static array of 10 ints

May 18, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

114,60

L14.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

FREE()

#include <stdlib.h>

void free(void* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

Technology, ity i Tacoma Lis1

May 18, 2021

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int mainQ)

int * X = NULL;

x = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_bQ);

printf(“The magic number is=%d\n“,*x);
return 0;

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a; Output:
} $./pointer_error
)) The magic number is=53247
void set_magic_number_b() [RPN R R

int b = 11111;
We have not changed *x but

int main() the value has changed!!
int * x = NULL; Why?

x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b(Q);

printf("The magic number is=%d\n“,*x);
return 0;

} 63

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2021 L1464

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int¥*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

L14.65

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

Technology, ity i Tacoma

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
=" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCS5422: Operating Systems [Spring 2021]

4.
School of Technology, University of Washi Tacoma L1466

May 18, 2021

Slides by Wes J. Lloyd

L14.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

" void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

L1467

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

DOUBLE FREE

int *x = (int *)malloc(sizeof(int)); // allocated
free(x); free
free (x); free repeatedly

= Can’t deallocate twice
= Second call core dumps

28 iR < 26 <

l Heap | | l Heap
I free(x)

T Stack | | Tsu(k

i KoK g | 2KBvalld) [
Address Space Address Space

i | e
(free) | — (free) i — Lkt
i i Error

May 18, 2021 TC55422: Operating Systems [Spring 2021]

school of Technology, University

Tacoma

L1468

SYSTEM CALLS

OBJECTIVES - 5/18

= brk(), shrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

May 18, 2021 L14.69

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri nology, University i Tacoma

= Questions from 5/13
= Assignment 2
= Quiz 3 - Synchronized Array

= Tutorial 2 - Pthread, locks, conditions tutorial

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

| = Chapter 15: Address Translation

= Chapter 16: Segmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

school of Technology, University of

- Tacoma

11470

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2021]

Ly T School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 15: Address translation
=Base and bounds
= HW and OS Support

May 18, 2021 TC55422: Operating Systems [Spring 2021]

school of Technology, University of

- Tacoma

ua72

Slides by Wes J. Lloyd

L14.12

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

ADDRESS TRANSLATION

BASE AND BOUNDS

Virtual mapping .)
= 64KB KB 0KB = Dynamic relocation
Address space Program Code Operating Syst
il = Two registers base & bounds: on the CPU
example i
Heap = OS places program in memory
= Translation: l v
i Code 2 = Sets base register
n.1appllng e g
LU - . & { physical address = virtual address + base }
physical (free) but not in use) 2
t g .
. as. Stack 2 = Bounds register
T = Stores size of program address space (16KB)
(ot in use) = OS verifies that every address:
Stack)
= L 64KB [0 < virtual address < bounds J
16KB i
g Spac Physical Memory

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

11473 May 18, 2021

La7a

128 : movl 0xO(bebx), %eax ‘ e - MMU
1K 135 |mod Sen, 0 (tebm)
= Base = 32768 = Program Code = Portion of the CPU dedicated to address translation
= Bounds =16384 - ” = Contains base & bounds registers
eap
- . . .
Fetch mstru(?tlon at 128 (virt addr) 1 4B l = Base & Bounds Example:
- Z;);;:dr ;;;” a3c|2dr6+8base reg . = Consider address translation
. = 4
w332z = 4 KB (4096 bytes) address space, loaded at 16 KB physical location
= Execute instruction o
ree
= Load from address (var x is @ 15kb=15360) Virtual Address Physlcal Address
= 48128 = 15360 + 32768 (base) -- found x... stack 0 16384
= Bounds register: terminate process if 1024 17408
= ACCESS VIOLATION: Virtual address > bounds reg LAKE; 3000 19384
15KB [x000 Intx
[physical address = virtual address + base J 166 Stack FAULT 4400 20784 (out of bounds)
| e St ot Engeag o Techmegy Unkersityof WashingtonTcoma uazs | a8 L | Teennotagy ety ofWashingion- Tscoma 7o

OS SUPPORT FOR MEMORY
DYNAMIC RELOCATION OF PROGRAMS VIRTUALIZATION

= Hardware requirements: = For base and bounds OS support required
Requirements m = When process starts running
Privileged mode CPU modes: kernel, user Allocate address space in physical memory
Base / bounds registers Regi to support add ion
Translate virtual addr; check if in Translation circuitry, check limits =When a process is terminated
bounds Reclaiming memory for use
Privileged instruction(s) to Instructions for modifying base/bound .
update base / bounds regs registers * When context switch occurs
Privileged instruction(s) Set code pointers to OS code to handle faults Saving and storing the base-bounds pair
to register exception handlers
Ability to raise exceptions For out-of-bounds memory access, or - Exceptnl)n har.1dlers _
attempts to access privileged instr. Function pointers set at OS boot time
May 18, 2021 TCSS422: Operating Systems [Spring 2021] 1477 ‘ May 18, 2021 TCSS422: Operating Systems [Spring 2021]

11478

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L14.13

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

0S: WHEN PROCESS STARTS RUNNING 0S: WHEN PROCESS IS TERMINATED

= 0S searches for free space for new process = 0S places memory back on the free list
= Free list: data structure that tracks available memory slots
OKB 0KB Free list 0Ke
Operating System l Operating System
Operating System
The OS lookup the free list 16K8 16K8
16kB 16KB . 16KB _
Free list (not in use) (not in use)
(not in use) ¢ S5 ¢ 3268
16K8 328 = e Process A 32KB (not in use)
i (allocated bt ot i use) 48KB l b
48kB 48KB Stack (not in use) (not in use)
64K8 48KB 64K8
(not in use) Physical Memory Physical Memory

Physical Memory

TCS5422: Operating Systems [Spring 2021]

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

L14.80

11479 May 18, 2021

May 18, 2021

0S: WHEN CONTEXT SWITCH OCCURS DYNAMIC RELOCATION

= 0S must save base and bounds registers = 0S can move process data when not running
= Saved to the Process Control Block PCB (task_struct in Linux)

. OS deschedules process from scheduler

. OS copies address space from current to new location

Process A PCB 1
2
3. 0S updates PCB (base and bounds registers)
4

kB Context Switching %8
Operating System — Operating System 0s hedul
. reschedules process
16KB 16KB p
(not in use) base (not in use) base
26 328 208 —{ 28] = When process runs new base register is restored to CPU
Rroces s being Process A i
Currently Running ounds | bounds
48KB ~ r1 64KB .
488 {see] — — = Process doesn’t know it was even moved!
Process B CurrentlyRunning | |
64KB. 64KB. s
Physical Memory Physical Memory
TCSS422: Operating Systems [Spring 2021] TCS5422: Operating Systems [Spring 2021]
el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome L1481 285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma L1482

| | |
"Consider a 64KB computer the loads a program. The'
BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory = Questions from 5,13

address translation for a virtual address of 6000 ? = Assignment 2
= Quiz 3 - Synchronized Array

OBJECTIVES - 5/18

34768 = Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 32: Concurrency Problems
38768 = Non-deadlock concurrency bugs
= Deadlock causes
32769 = Deadlock prevention
= Chapter 13: Address Spaces
36864 = Chapter 14: The Memory API
= Chapter 15: Address Translation
Out of bounds [chaot !§_? tat]
.. i .. eyl 2r2n Schoolo;E:;:;L’:?ngy:;?i""f:ch‘:\:?fgy,Ui]iversilvofWashinglon - Tacoma L1484

Slides by Wes J. Lloyd L14.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Spring 2021]

Mavtsgzn2e School of Engineering and Technology, University of Washington -

BASE AND BOUNDS INEFFICIENCIES

OKB

= Address space 1KB | Program Code
N N 162 2KB
= Contains significant unused memory o
= Is relatively large 2] p—

= Preallocates space to handle stack/heap growth ¢ ‘17

= Large address spaces

= Hard to fit in memory (free)
= How can these issues be addressed? l
14KB
15KB Stack
16KB
N

MULTIPLE SEGMENTS

= Memory segmentation

= Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Each segment can placed separately

=Track base and bounds for each segment (registers)

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16KB - ‘
(not in use)
t Segment Base Size
Srack Code 32K 2K
(not in use)
32KB o Heap 34K 2K
Heap Stack 28K 2K
HEk0 (not in use)
64K

B
Physical Memory

TCSS422: Operating Systems [Spring 2021] L14.87
hool of Engineeri i i

hnology, ity i Tacoma

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

May 18, 2021 11488

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base }

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Segment __Base

Bounds check: .
Is virtual address within 2KB [lileed

address space? ogdens

(not in use)

Virtual Address Space Physical Address Space

ADDRESS TRANSLATION: HEAP

irtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Segment Base size

Heap 3K 2%
(not in use)
32k8
Code
4KB 34kB 104 + 34K or 34920
- [« is the desired
Hesp
= sical address
6 TP 36k | Physical add

(not in use)
Address Space

Physical Memory

TCSS422: Operating Systems [Spring 2021]

School of Technology, ity i Tacoma L14.89

May 18, 2021

TCS5422: Operating Systems [Spring 2021]

4,
School of Technology, University of Washi Tacoma L1490

May 18, 2021

Slides by Wes J. Lloyd

L14.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

5/18/2021

= Heap starts at 4096 + 2 KB seg size = 6144
= Offset= 7168 > 4096 + 2048 (6144) T e
6KB
;E; (not in use)
Address Space

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

11491

SEGMENT REGISTERS

= Used to dereference memory during translation

13 M2 4% 10,9 8 7 & 5 4 B3 2 1.0

| I |
T

T
Segment Offset

= First two bits identify segment type

= Remaining bits identify memory offset

= Example: virtual heap address 4200 (01000001101000)
Segment bits

13 12 17 10.9 8 7 ‘6 5 4 3 2 1 @
0

| o[1|o|ojojoflo|1|1]|0]1 0 0 | Code 00
l I | Heap 01

T T Stack 10
Segment Offset - 11

TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma L1492

‘ May 18, 2021

SEGMENTATION DEREFERENCE

get 2 bits of 14-bit VA
Segment tualhddress & SEG_MASK) >> SEG_SHIFT

Offset = VirtualAddress & OFFSET_MASK
if (offset >= Bounds[Segment])
RaiseException (PROTECTION_FAULT)
else
PhysAddr = Base [Segment] + Offset
Register = AccessMemory (PhysAddr)

RGN

= VIRTUAL ADDRESS = 01000001101000

" SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
" OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104
" OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCS5422: Operating Systems [Spring 2021]

el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

114.93

STACK SEGMENT

= Stack grows backwards (FILO)
®Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
26KB T i i ive-
Segment Register(with Negative-Growth Support)
Stack

28KB Segment Base Size Grows Positive?

(not in use) Cods 22K 2K £

Heap 34K 2K s

Stack 28K 2K o

Physical Memory

TCS5422: Operating Systems [Spring 2021]

285 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

L14.94

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

® Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® 50 (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K :h Read-Write
stack 28K 2K 0 Read-Write

TCS5422: Operating Systems [Spring 2021]

el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

114.95

Slides by Wes J. Lloyd

| |
"Consider a program with 2KB of code, a 1 KB stack,"

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

L14.16

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

SEGMENTATION GRANULARITY

= Coarse-grained

=" Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri Technology, University i Tacoma

114,97

SEGMENTATION GRANULARITY - 2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
=Stored in memory
=Tracked large number of segments

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, Universi i Tacoma

114.98

May 18, 2021

MEMORY FRAGMENTATION

= Consider how much free space? Not compacted
= We'll say about 24 KB K8
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16K8B
segment (not in use)
24KB
Allocated
= Can we fulfil the request for 20 KB of 3B o
contiguous memory? 40KB Allgtatad
45K8 (not in use)
56KB
Allocated
64K8
TCSS422: Operating Systems [Spring 2021]
May 18, 2021 e e > Technolos iUnNers Y . TET 114.99

COMPACTION

= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 8KB | Operating System
contiguous memory?
16k8
= Drawback: Compaction is slow 24KE
= Rearranging memory is time consuming Allocated
= 64KB is fast 228
= 4GB+ ... slow 40K8
= Algorithms: 48KB
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) i
TCSS422: Operating Systems [Spring 2021]
285 P Sehoolof Ergineerins andTechnokoeyjUnvest f Tecoma 114100 ‘

CHAPTER 17: FREE

SPACE MANAGEMENT

] TCSS422: Operating Systems [Spring 2021]
Y 18, School of Engineering and Technology, University of Washington -

L14.101

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of Washington - Tacoma

May 18, 2021 114102

Slides by Wes J. Lloyd

L14.17

TCSS 422 A — Spring 2021
School of Engineering and Technology

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

5/18/2021

TCS5422: Operating Systems [Spring 2021]
el e o T B s oy Tty A T = TRy

114.103

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging

= Results from variable sized malloc requests
= Leads to fragmentation

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

4100
School of Engineering and Technology, University of Washington - Tacoma L0

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [_free [Tused | free]
0

10 20 30

= Request for 15-bytes

addr:0 addr:20

free listt head — 15 .99 — 1on:10

— NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Spring 2021]
el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

114.105

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: Jost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma L14.106

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tused | free |
0 10 20 30

addr:0 addr:20

free list: _head —> ,.,.1¢ Tent 10

— NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [TUsed [free |
0 10

20 21 30

addr:0 addr:21
— NULL

free list. head —» 1.,.10 i

TCS5422: Operating Systems [Spring 2021]
el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

114.107

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head —> 1n:10 > Len:10 len:10 > NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

—> NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

May 18, 2021 TCS5422: Operating Systems [Spring 2021]

.
School of Engineering and Technology, University of Washington - Tacoma L4108

Slides by Wes J. Lloyd

L14.18

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

= Header block

} The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

=Small descriptive block of memory at start of chunk

MEMORY HEADERS - 2

size: 20

jef struct _ header_t {
int size;
int magic;

The 20 bytes } header_t;

magic: 1234567

returned to caller

» A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

114.109

TCS5422: Operating Systems [Spring 2021]

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {
header_t *hptr = (void *)ptr - sizeof (header_t);

TCS5422: Operating Systems [Spring 2021]

285 P o T T T o e A S T = e 4110
= Simple free list struct
t def struct _ node_t {
int size;
ct __node_t *next;
} nodet_t;
= Use mmap to create free list
= 4Kkb heap, 4 byte header, one contiguous free chunk
mmap rns a | to a ch of free space
node_t *hea mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP7M0N\MP7PRIVATE, 1, 0);
head->size = 4096 - sizeof(node_t);
head->next = LL;
TCSS422: Operating Systems [Spring 2021] a2

May 18, 2021

School of Engineering and Technology, University of Washington - Tacoma

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> T)
size: 4088 2 20

magic: 1234567

the free 3980 byte chunk

the rest of Firstblock 1} 100 bytes now allocated
the 4KB chunk is used
\—1 head —>
size: 3980
next 0

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome Lt
= Create and initialize free-list “heap”
PROT_READ|PROT_WRITE,
MAP7MONIMAP7PRIVATE, -1, 0):
head->size sizeof (node_t);
head->next
= Heap layout:
[virtual address: 16KB]
- header: size field
size: 4088
head —>| next: 0 | header: next field(NULL is 0)
LI the rest of the 4KB chunk
114113

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

uai1a

Slides by Wes J. Lloyd

L14.19

TCSS 422 A — Spring 2021
School of Engineering and Technology

FREE LIST: FREE() CALL

= Addresses of chunks

= Start=16384

Free Space With Three Chunks Allocated

8 Bytes Header { [virtual address: 16KB]

100 bytes still allocated

(but about to be freed)

100 bytes still allocated

+ 108 (end of 15t chunk) w
7t ek e maFgr:ethis 100 bytes sl allocated
+ 108 (end of 3™ chunk) | reathl } ytes still allocate

= 16708 size: 100

magic: 1234567

head Size 3764

[next 0|

The free 3764-byte chunk

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

14.115

5/18/2021

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
= Our 3 chunks start at 16 KB
(@ 16,384 bytes)

= [virtual address: 16KB]
[sizer 100]
[magic: 1234567 |

100 bytes still allocated

head i
16708
= Free chunk #2 - sptr Pt —

Block (now a free chunk of
= Sptr = 16500 Now Free memory)

. ize: 100
= addr - sizeof(node_t) = =

100 bytes still allocated
= Actual start of chunk #2 T
= 16492 s =

The free 3764-byte chunk

[

TCS5422: Operating Systems [Spring 2021]

285 P o T T T o e A S T = e

14116

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks:

Free(16392) next: 16492

[virtual address: 16K8]

100 |«——

0
= Free(16608) (now free)
00 |«
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head —p— T
= External fragmentation Fnext 16384 |
= Free chunk pointers
out of order (now free)
size 3764 |«
= Coalescing of next e]
pointers is needed The free 3764-byte chunk
[

TCS5422: Operating Systems [Spring 2021]

el e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

114.117

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= 1 break sprk()
Ayl
break T (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCS$422: Operating Systems [Spring 2021]
avEE 2028 ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 4118

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
=Traverse free list
= [dentify largest free chunk

MEMORY ALLOCATION STRATEGIES

= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Spring 2021]

el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

114.119

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 ——> 20 —> NULL

= Result of Best Fit

head —>» 10 —> 30 —> 5 ——> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

TCS5422: Operating Systems [Spring 2021]

eyl 2r2n I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

114.120

Slides by Wes J. Lloyd

L14.20

TCSS 422 A — Spring 2021
School of Engineering and Technology

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fIt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Avoids full free list traversal

= Find first chunk, that is large enough for the request, and split

MEMORY ALLOCATION STRATEGIES - 2

5/18/2021

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri inology, University i Tacoma

114.121

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

May 18, 2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i Tacoma

1a.122

BUDDY ALLOCATION

= Binary buddy allocation

accommodate the request; the next split is too small...
= Consider a 7KB request

64KB free space for 7KB request

= Divides free space by two to find a block that is big enough to

May 18, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

nology, ity ington - Tacoma

114.123

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

May 18, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

ua.124

QUESTIONS

Slides by Wes J. Lloyd

L14.21

