TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

Condition Variables,
Concurrency Problems 'Q
<

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Maylj2020 School of Engineering and Technology, University of Washington [fll Tacoma

5/18/2021

OBJECTIVES - 5/13

| = Questions from 5/11 |
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
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ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021
Home

Announcements

- + Upcoming Assignments
Sylbhis | < TCSS 422 - Online Daily Feedback Survey - 4/1 |
: Avallable unti Ar 33t 11:59pm | Due Apr 3 3t10pm. | 71 pts
Dicriiccinne o Y eimsas
v [

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 ospts
Onascale of 1to 10, p ify your perspecti in today’s
class:

1 2 3 a4 s 6 7 8 9 10

Wosely Equal Hostly

Review To e New and Review Hew to He
Question 2 05pts

Please rate the pace of today’s class:
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MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (47 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.77 (1 - previous 5.99)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.81 (T - previous 5.36)

May 13, 2021 TCS5422: Computer Operating Systems [Spring 2021]

School of Engi uss

Tacoma

FEEDBACK

= Could hand over hand locking strategy cause there to be a
traffic jam of sorts? Where each thread has to wait for the
one that's at the beginning since it seems like it wouldn't be
able to skip ahead of a thread that was taking longer than
needed.

= “Thread” traffic with hand-over-hand locking should be less
than with a single lock for the entire list

= A new thread could start traversing the list at each iteration
as soon as another thread iterates to the next item

= For a list of N items, N threads could be traversing the list
simultaneously

= Drawback is many calls to lock/unlock APIs

May 13, 2021 TC55422: Operating Systems [Spring 2021]

School of Technology, University of Washington - Tacoma L6
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OBJECTIVES - 5/13

= Questions from 5/11
|I Assignment 2 |
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
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OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
| " Qulz 3 - Synchronized Array |

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCSS422: Operating Systems [Spring 2021]
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138

W pthread_t, pthread_mutex_t,

automatically dropped)

Yes, practice would be helpful
before/with Assignment 2

No, | am swamped |B

Either way - Yes or No is Fine [C

Vote For Posting: Tutorial 2: Pthread Tutorial:
Parallel Prime Number Generation with

pthread_mutex_cond (two lowest quiz grades

] May 13, 2034,

TCSS422: Operating Systems [Spring 2021]
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OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables

| * Producer/Consumer |

= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCSS422: Operating Systems [Spring 2021]
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CHAPTER 30 -
CONDITION VARIABLES

] TCSS422: Operating Systems [Spring 2021]
Y13, School of Engineering and Technology, University of Washington -

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c
TCSS422: Operating Systems [Spring 2021]
Ve 2028 Sehool of Engineering and Technolosy/University ot Washi Tacoma 31z
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MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

5/18/2021

TCS5422: Operating Systems [Spring 2021]
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ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

void thr_exit() { € Child calls
done = 1;
Pthread_cond_signal (sc) ;

thr_join() { € Parent calls
if (done == 0)
Pthread_cond_wait (sc) ;

CEI e WN

}

= Subtle race condition introduced
= Parent thread calls thr_]JoIn() and executes comparison (line 7)
= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost !
= The parent deadlocks

TCS5422: Operating Systems [Spring 2021]
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PRODUCER / CONSUMER

Work Queue

I

T

TCSS422: Operating Systems [Spring 2021]
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PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

May 13, 2021 TCS5422: Operating Systems [Spring 2021]
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PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

=Synchronized access:
sends output from grep > wc as it is produced

= File stream

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)

= Producer “puts” data, Consumer “gets” data

= “‘Bounded Buffer” shared data structure requires
synchronlzation

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma .7

1 int buffer;

2 int count = 0;

3

1 4 put (int value) {

5 assert (count == 0);

6 count = 1;

7 buffer = value;

8 )

9

10 int get() {

11 assert (count == 1);

12 count = 0;

13 buffer;

14 }

TCSS422: Operating Systems [Spring 2021]
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PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1

2

3 int loops = (int) arg:

4 for (i = 0; i < loops; i++) (
5 put(i);

6 )

2 )

8

9 void *consumer (v

10 int i7

a1 while (1) {

12 int tmp = get();

13 printf("sd\n", tmp);
14 )

15 )

TCS5422: Operating Systems [Spring 2021]
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PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

i cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

% :

6 =05 i< loops; i++) { Producer
g read_mutex_lock (s&mutex); pl
8 (count == 1)

9 Pthread_cond wait(&cond, smutex);

10 put (i) D

11 Pthread_cond_signal (&cond) ;

12 pthread mutex_unlock (smutex) ;

13 }

14 i

15

16 void *consumer(void *arg) {

13 int i;

18 for (i = 0; i < loops; i++) {

19 ? Pthread_mutex_lock (smutex) ; c1

TCS5422: Operating Systems [Spring 2021]

2 P o T T T o e A S T = e

‘ 113.20

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 int tmp = get();

23 Pthread cond_signal (&cond) ;

24 Pthread mutex_unlock (&mutex) ;

25 printf("sd\n", tmp);

26 } Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCS5422: Operating Systems [Spring 2021]
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EXECUTION TRACE: ISSUE: NO WHILE
1 PRODUCER, 2 CONSUMERS, 1 CONDITION

T, | State |T,| State [T, | State | Count Comment
= Two threads <1 | Running Ready Ready 0
2 | Running Ready Ready 0
» 3| Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Running 0
c1 /p1 - lock Sleep Ready p2 | Running 0
c2/p2- check var Sleep Read! p4 | Running 1 Buffer now full
¢3/p3- wait Ready Ready | pS | Running 1 T,y awoken
c4- get() ieady Ready | p6 | Ruming 1
eady Ready | pl | Running 1
p4- put() Ready Ready | p2 | Rumning 1
c5/p5- signal Ready Read» p3 Sleep 1 Buffer full; sleep
c6/p6- unlock Ready[lPcl | Running Sleep 1 T,q sneaks in ..
Ready | c2 | Running Sleep 1
ReadylPc4 | Running Sleep 0 .. and grabs data
Ready | 5 | Running Ready 0 7, awoken
Ready[lPc6 | Running Ready 0
‘ 4 | Running Ready Ready 0 Oh oh! No data

TCS5422: Operating Systems [Spring 2021]

ievil2ran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma
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PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is Insufficlent ...
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" T4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

TCS5422: Operating Systems [Spring 2021]

L el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 11323 ‘

EXECUTION TRACE: ISSUE: 1 CONDITION
WHILE, 1 PRODUCER, 2 CONSUMERS

Slides by Wes J. Lloyd

T, | state |1,| state |7, | state [Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1/p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
c3/p3- wait z:eep z:eep p; sunmng g
e ee unnin
c4- get() Slees S\ee:j 24 Runmn: 1 Buffer now full
p4- put() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 T,q grabs data
* 5 | Running Ready Sleep 0 Oops! Woke T,
My on | ISSEEOpI e B gon ocoms | s |

L13.4
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WHILE, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

EXECUTION TRACE: ISSUE: 1 CONDITION - 2

Ta| state |r,| state |7, | state |cCount| Comment
Legend 1 - - - - : oty

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
03/p3— wait <2 | Running Ready Sleep 0
c4- get() a3 Sleep Ready Sleep 0 Nothing to get
P4' put() S:eep 2 | Running Sleep 0
C5/P5' signal Sleep 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Spring 2021]
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TWO CONDITIONS

= Required w/ multiple producer and consumer threads
= Use two condition variables: empty & full

= One condition handles the producer

= the other the consumer

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

= >> Becomes BOUNDED BUFFER, can store multiple matricies

1 cond_t empty, full;
2 mutex_t mutex;
3
4 *producer (void *arg)
5 int i;
6 (i =0; i< loops; it4) {
7 Pthread_mutex_lock (smutex) ;
8 (count == 1)
9 Pthread cond wait (sempty, &mutex);
10 put (i) ; -
11 Pthread_cond signal (i sfull);
12 Pthread mutex_unlock (&mutex);
13 } B B
14 }
15
TC55422; Operating Systems (Spring 2021]
2 P SchoolofE:gineer?ngy:ndTelh‘:\uluggy,Un]iversilyofWashingtoanacuma ‘ 1326 ‘
!
2 nutex_E mutes
3
4 void *producer(void *arg) {
5 int i;
6 for (i =07 i < loops; i++) {
7 Pthread_mutex_lock (smutex) ; .
8 while (count == MAX) p2
9 Pthread_cond_wait (sempty, smutex); p3
10 put (i); p4
1 Pthread_cond_signal (&full); ps
12 Pthread_mutex_unlock (smutex) ; pé
13 )
14 )
15
16 d *arg) |
17
18 Zor (i =07 i< loops; i++) {
19 Pthread_mutex_lock (smutex) ; c
20 while (Count = 0) c
21 Pthread_cond wait( &full, &mutex); c
22 int tmp = get (); ca
May 23, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 328 ‘
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1
2
3
4
B
6 void put(int value) {
7 buffer[fill] = value;
8 £ill = (fill + 1) % MAX;
8 count++;
10 }
11
12 t() {
13 tmp = buffer[use];
14 use = (use + 1) % MAX;
18 count--;
16 rn tmp;
17 )
TCSS422: Operating Systems [Spring 2021]
L ) School of Engineering and Tec[hzolctggy, Ur\!versi(yu!Washing(un—Ta:oma ‘ 327 ‘
(Cont.)
23 Pthread_cond_signal (sempty) ; c
24 Pthread_mutex_unlock (smutex); c
25 printf("$d\n", tmp);
26 }
27 }
= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty
May 13, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 132 ‘
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| |
* Using one condition variable, and no while loop is *

sufficient to synchronize access to a bounded buffer
shared by:

1Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

L13.5



TCSS 422 A — Spring 2021
School of Engineering and Technology

shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

|
* Using one condition variable, with a while loop is "
sufficient to synchronize access to a bounded buffer

5/18/2021

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using two condition variables, and a while loop is *

OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables
= Producer/Consumer

I = Covering Conditions I

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCS5422: Operating Systems [Spring 2021]
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COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

May 13, 2021 TCS5422: Operating Systems [Spring 2021]
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COVERING CONDITIONS - 2

1 / 7 many bytes of the heap are free?
2 int bytesLeft = MAX HEAP_SIZE;

3

4 eed lock an i

5 cond t ci

6 mutex_t m;

7

8 oid *

9 allocate (int size) {

pthread mutex_lock (sm) ;

le (bytesLeft < size)
Pthread_cond_wait (&c, &m);

10
11 »
12

Check available memory

13 void *ptr = ...; // get mem from heap
14 bytesLeft -= size;

15 pthread mutex_unlock(sm) ;

16 return ptr;

17 )

18

19 void free(void *ptr, int size) {

20 Pthread mutex_lock(sm) ;

bytesLeft += size;

22 <Tihread cond signal (601
23 Pthread mutex_unlock (sm) 7
24 }

TCS5422: Operating Systems [Spring 2021]
L el ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms
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COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory
= Each thread evaluates if there's enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1336
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CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage
= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous
= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about
sharing eating utensils
= Each philosopher tries to obtain two forks

in order to eat /

= Mimics deadlock as there are not enough forks
= Solution is to have one left-handed philosopher
that grabs forks in opposite order

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

(e e Technology, ity i Tacoma

WE WILL RETURN AT
5:14PM

ey (25780 TCSS422: Operating Systems [Spring 2021]
ik School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
|- Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

May 13, 2021 TCS3422: Operating Systems [Spring 2021] 1339

school of Technology, ity ington - Tacoma

CHAPTER 32 -

CONCURRENCY
PROBLEMS

ey (25780 TCSS422: Operating Systems [Spring 2021]
ik School of Engineering and Technology, University of Washington -

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

May 13, 2021 L1341

TCS5422: Operating Systems [Spring 2021]
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NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

before use

=Qrder violation: failure to initialize lock/condition

TCS5422: Operating Systems [Spring 2021]
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ATOMICITY VIOLATION - MY

= Two threads access the proc_info field in struct thd
" NULLis 0in C

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1 Threadl::
:
3
. 4 fputs (thd->proc_info , .);

Programmer intended 5

variable to be accessed # 6 }

atomically... 7
g =
9 Ithd»>proc71nfo = N'JLLII

TCSS422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e U344

® Add locks for all uses of: thd->proc_info

ATOMICITY VIOLATION - SOLUTION

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5  if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..);
9 }
10 pthread mutex_unlock (slock);
11

12 Thread2::
13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2021]
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ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
void init () {

mThread = PR_CreateThread (mMain, ..);
b

i
2
3
4
5
6  Thread2::
7 void mMain(..) {

8 mState = mThread->State
9

}

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2021]

B
School of Engineering and Technology, University of Washington - Tacoma usde

May 13, 2021

= Use condition & signal to enforce order
1  pthread _mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread _cond t mtCond = PTHREAD_COND_INITIALIZER;
X int mtInit = 0;
4
= Thread 1::
6 0id init () {
7
8 mThread = PR_CreateThread (mMain,..) ;
-]
10 // sig at the thread has been
11 pthread mutex_lock (smtLock) ;
12 mtInit = 1;
13 IEthread cond signal(&mtcond);l
14 pthread_mutex_unlock (smtLock) ;
15
16 }
17
18 Thread2::
19 void mMain(.){
20
TCSS422: Operating Systems [Spring 2021]
L el School of Engineering and Tec[hzolctggy, Ur\!versi(y orWazhingtonaTacoma L1347

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21 // wa to be initialize
22 pthread mutex_lock (smtLock) 7
23 while (mtIpit == _0)
24 | pthread_cond_wait (smtCond, &mtLock); |
25 pthread MUCEX UHTOCK (SMCLOCRT T
26
27 mState = mThread->State;
28
29 )
TC55422: Operating Systems [Spring 2021]
I ER e AP e H3a
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NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCS5422: Operating Systems [Spring 2021]
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5/18/2021

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 11350

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1) ; lock (L2) —
lock (L2) ; lock(Ll);

= Both threads can block, unless
one manages to acquire both locks

Lock L2
Holds

Wanted by
. =
Aq payuepy, -

&

TCS5422: Operating Systems [Spring 2021]
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OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

I = Deadlock causes I

= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

TCS5422: Operating Systems [Spring 2021]
‘ ievil2ran Sehoollof Erineering andTech nolosyiUnersity oWashinatonkTeconta

u3s2 ‘

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCS5422: Operating Systems [Spring 2021]
L el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11353

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

Slides by Wes J. Lloyd
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OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
® Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention |

= Chapter 13: Address Spaces
= Chapter 14: The Memory API

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected) {

3 *address = new;

4 return 1; // success

5

6

i

May 13, 2021 TCS5422: Operating Systems [Spring 2021]
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PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount)

int old = *value;
}while ( CompareAndswap (value, old, old+amount)==0);

e wn e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

MUTUAL EXCLUSION: LIST INSERTION

® Consider list insertion

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1357

May 13, 2021

1 void insert(int value){
2 node t * n = malloc(sizeof (node_t)):
3 assert( n != NULL );
4 n->value = value ;
5 n->next = head;
6 head =n;
¥ }
May 13, 2021 TCS5422: Operating Systems [Spring 2021] 1358

School of Engineering and Technology, University of Washington - Tacoma

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1 void insert(int value){

2 node_t * n = malloc(sizeof (node_t));
3 assert( n != NULL );

4 n->value = value
5 lock(1listlock) 7
6

i

8

9

n->next = head;
head =n;
unlock(listlock) ;

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int value) {
node_t * loc (sizeof (node_t));
assert (n != NULL);
n->value = value;

n->next = head;
} (CompareAndSwap (&head, n->next, n));

©ao e wn e

i

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1359
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CONDITIONS FOR DEADLOCK PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention) ;
2 lock(ul):
: } ; : 3 lock(L2):
Mutual Exclusion | Threads claim exclusive control of resources that they require. i -
5  unlock(prevention);

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.
There exists a circular chain of threads such that each thread holds one more = Order doesn’t matter for L1, L2

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Cireularwait resources that are being requested by the next thread in the chain )
= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity
= Encapsulation: consider the Java Vector class...
TCSS422: Operating Systems [Spring 2021] TCSS422: Operating Systems [Spring 2021]
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CONDITIONS FOR DEADLOCK PREVENTION - NO PREEMPTION

= Four conditions are required for dead lock to occur ®When acquiring locks, don’t BLOCK forever if
unavailable...
“pthread_mutex_trylock() - try once
Mutual Exclusion | Threads claim exclusive control of resources that they require. [ ] pthread_mutex_timed|0ck() o try and wait awhile
. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources 1 top:
2 lock(Ll) No
*No preemption | Resources cannot be forcibly removed from threads that are holding them. 3 if( trylock(L2) == -1 ){
4 unlock (L) STOPP'NG
’ . There exists a circular chain of threads such that each thread holds one more o goto tops
Cireular wait ¢ . 3 6 }
resources that are being requested by the next thread in the chain ANY
= Eliminates deadlocks TIME
TC55422: Operating Sy [Spring 2021] TCS5422: Operating S [Spring 2021]
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NO PREEMPTION - LIVELOCKS PROBLEM CONDITIONS FOR DEADLOCK

= Can lead to livelock = Four conditions are required for dead lock to occur
1 top:
2 lock(L1) ;
£) if( trylock(L2) == -1 ){ e =
i Lok Condition Description
2 i goto top; Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

= Two threads execute code in parallel > Hold-andowalt: | poities
always fail to obtain both locks

No preemption | Resources cannot be forcibly removed from threads that are holding them.

= Fix: add random delay

=Allows one thread to win the
livelock race!

ChclE There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2021]
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PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

5/18/2021

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

‘ May 13, 2021 ‘ TCSS422: Operating Systems [Spring 2021] 367

School of Engineering and Technology, University of Washington - Tacoma

Circular wart resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
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" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler
=Scheduler knows which locks threads use

® Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

®Lock requirements of threads:

TCS5422: Operating Systems [Spring 2021]

ievil2ran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

113.70

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

e =

cPU 2 T2 ‘

= No deadlock can occur

= Consider:
L1 yes yes yes no
[ | yes | yes | yes | o |
TCSS422: Operating Systems [Spring 2021]
L el ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms us71

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCS5422: Operating Systems [Spring 2021]
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DETECT AND RECOVER

action.
= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day

recovery techniques.

= Consider the effort tradeoff of finding every deadlock bug

= Allow deadlock to occasionally occur and then take some

= Many database systems employ deadlock detection and

May 13, 2021
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OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
| = Chapter 13: Address Spaces |
= Chapter 14: The Memory API

May 13, 2021 TC55422: Operating Systems [Spring 2021]
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CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Spring 2021]

Maviiizn2e School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/13

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

May 13, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi - Tacoma L1376

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

[y e chnology, ity i Tacoma

11377

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox
Process A

Process B Process C

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma Ls.78

May 13, 2021
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MOTIVATION FOR

MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

EARLY MEMORY MANAGEMENT

®Load one process at a time into memory

= Poor memory utilization ok T
el ST
= Little abstraction e Gmbens)
Current
Program
(code, data, etc.)
-

Physical Memory

TCS5422: Operating Systems [Spring 2021]

7
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MULTIPROGRAMMING

WITH SHARED MEMORY

= Later machines supported running multiple KB

Operating System
processes ek | teode,data etc)
= Swap out processes during 1/0 waits to Frea
increase system utilization and efficiency 226K, s
= Swap entire memory of a process to disk sookp | code: dataetc)
for context switch sl
. 256KB —
= Too slow, especially for large processes e
3208 b A
. rocess
= Solution> (code, data, etc)
. 384KB
= Leave processes in memory Foe
448KB
= Need to protect from errant memory f— o

accesses in a multiprocessing environment Physical Memory

ADDRESS SPACE

= Easy-to-use abstraction of physical
memory for a process

Program Code
1KB

Heap

2KB l

" Main elements:

=Program code (ree)
=Stack
- H €2 p 15KB T
Stack
16KB

lExampIe: 16KB address space Address Space

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1381
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ADDRESS SPACE - 2

= Code
0KB
= Program code Program Code
1KB
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
(free)
= Parameter variables -
= Return values (for functions) T
15k8
= Heap Stack
= Dynamic storage L6KE ‘Address Space

= Malloc() new()

ADDRESS SPACE - 3

= Program code

= Static size iy e el
K8
Heap
= Heap and stack 2xB
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends 4o
= Addresses are virtual T
= They must be physically mapped by the 0S K8 Stack
16KB

Address Space

TCS5422: Operating Systems [Spring 2021]
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VIRTUAL ADDRESSING VIRTUAL ADDRESSING - 2
Address Space
= Every address is virtual = Output from 64-bit Linux: e Code
(Text)
= 0S translates virtual to physical addresses location of code: Ox400686 oonee0 o
e s location of heap: 0x1129420 0xcf2000 Hep
AT SR location of stack: 0x7ffe040d77e4 S l
int main(int argec, char *argv(]){ heap
printf("location of code : $p\n", (void *) main);
printf("location of heap : $p\n", (void *) malloc(l)):
int x = 3; (free)
printf("location of stack : $p\n", (void *) &x);
return x; stack
}
=EXAMPLE: virtual.c ot Stack
0x7ff9ca49000
Mevis s IS S Byt vtingon- o N =1
GOALS OF GOALS - 2
0S MEMORY VIRTUALIZATION
= Transparency = Efficiency
= Memory shouldn’t appear virtualized to the program =Time
= 0S multiplexes memory among different jobs behind the Performance: virtualization must be fast
scenes
=Space

Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

= Protection

= |solation among processes
= 0S itself must be isolated

= One program should not be able to affect another ) )
(or the 0S) = Goals considered when evaluating memory

virtualization schemes

May 13, 2021 TCS5422; Operating Systems [Spring 2021]
hool of
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OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables

= Producer/Consumer CHA PTER 14: THE

= Covering Conditions
= Chapter 32: Concurrency Problems M EMORY API
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
IIChapter 14:The Memory API I
I e ——

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

113.89
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OBJECTIVES - 5/12

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
" size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 392

May 13,2021
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= Not safe to assume int *x = malloc(10 * sizeof (int));
. . printf (“$d\n”, sizeof(x));
data type sizes using
different compilers, | 4
systems

= Dynamic array of 10 iny int x[10;
printf (“%d\n”, sizeof(x));

= Static array of 10 ints [ e
TCSS422: Operating Systems [Spring 2021]
(e, 2 ool o Engineeri chnology, University Tacoma L1393

FREE()

#include <stdlib.h>

void free(void+* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1394
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#include<stdio.h>

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int main()

int ¥ X = NULL;

X = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

95

#include<stdio.h>
What will this code do?
int * set_magic_number_a()

int a =53247;
return &a; put:
$ ./pointer_error
The magic number is=53247

\foid set_magic_number_b() R S P R
int b = 11111;

We have not changed *x but
the value has changed!!

int main()

int * x = NULL; Why?
X = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf("The magic number is=%d\n“,*x);
return 0;

Slides by Wes J. Lloyd
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DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (2/2)

=Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function “int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of Tlocal
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCS5422: Operating Systems [Spring 2021]
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CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size_t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size_t size

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TCS5422: Operating Systems [Spring 2021]
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int *x = (int *)malloc(sizeof(int)); a cate:
free(x); // free memory
free(x); ree e

= Can’t deallocate twice
= Second call core dumps

2KB 2KB

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

allocated freed <
l Heap i Heap | |
free (x) I free(x)
(free) — (free) | —*
1 L]
_— K8 w e | 2KBwalld) [
‘Address Space Address Space
TCS5422: Operating Systems [Spring 2021]
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