TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

Condition Variables,
Concurrency Problems 'Q
<

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Maylj2020 School of Engineering and Technology, University of Washington [fll Tacoma

5/18/2021

OBJECTIVES - 5/13

| = Questions from 5/11 |
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ts2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021
Home

Announcements

- + Upcoming Assignments
Sylbhis | < TCSS 422 - Online Daily Feedback Survey - 4/1 |
: Avallable unti Ar 33t 11:59pm | Due Apr 3 3t10pm. | 71 pts
Dicriiccinne o Y eimsas
v [

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 ospts
Onascale of 1to 10, p ify your perspecti in today’s
class:

1 2 3 a4 s 6 7 8 9 10

Wosely Equal Hostly

Review To e New and Review Hew to He
Question 2 05pts

Please rate the pace of today’s class:

TCSS422: Computer Operating Systems [Spring 2021]
Ly L 2 School of Engineering and Technology, University of Washington - Tacoma L134

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (47 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.77 (1 - previous 5.99)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.81 (T - previous 5.36)

May 13, 2021 TCS5422: Computer Operating Systems [Spring 2021]

School of Engi uss

Tacoma

FEEDBACK

= Could hand over hand locking strategy cause there to be a
traffic jam of sorts? Where each thread has to wait for the
one that's at the beginning since it seems like it wouldn't be
able to skip ahead of a thread that was taking longer than
needed.

= “Thread” traffic with hand-over-hand locking should be less
than with a single lock for the entire list

= A new thread could start traversing the list at each iteration
as soon as another thread iterates to the next item

= For a list of N items, N threads could be traversing the list
simultaneously

= Drawback is many calls to lock/unlock APIs

May 13, 2021 TC55422: Operating Systems [Spring 2021]

School of Technology, University of Washington - Tacoma L6

Slides by Wes J. Lloyd

L13.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 5/13

= Questions from 5/11
|I Assignment 2 |
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCS5422: Operating Systems [Spring 2021]
el ‘ e e Ty o s oy Uty T - TR

us7

5/18/2021

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
| " Qulz 3 - Synchronized Array |

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCSS422: Operating Systems [Spring 2021]
2 P e BT T o Uy i = e

138

W pthread_t, pthread_mutex_t,

automatically dropped)

Yes, practice would be helpful
before/with Assignment 2

No, | am swamped |B

Either way - Yes or No is Fine [C

Vote For Posting: Tutorial 2: Pthread Tutorial:
Parallel Prime Number Generation with

pthread_mutex_cond (two lowest quiz grades

] May 13, 2034,

TCSS422: Operating Systems [Spring 2021]
P!

ua!.

OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables

| * Producer/Consumer |

= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCSS422: Operating Systems [Spring 2021]
ievil2ran Sehoollof Erineering andTech nolosyiUnersity oWashinatonkTeconta

113.10

CHAPTER 30 -
CONDITION VARIABLES

] TCSS422: Operating Systems [Spring 2021]
Y13, School of Engineering and Technology, University of Washington -

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c
TCSS422: Operating Systems [Spring 2021]
Ve 2028 Sehool of Engineering and Technolosy/University ot Washi Tacoma 31z

Slides by Wes J. Lloyd

L13.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

5/18/2021

TCS5422: Operating Systems [Spring 2021]
el AT o T B i oy ATt A T T

113.13

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

void thr_exit() { € Child calls
done = 1;
Pthread_cond_signal (sc) ;

thr_join() { € Parent calls
if (done == 0)
Pthread_cond_wait (sc) ;

CEI e WN

}

= Subtle race condition introduced
= Parent thread calls thr_]JoIn() and executes comparison (line 7)
= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost !
= The parent deadlocks

TCS5422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e

[SERT)

PRODUCER / CONSUMER

Work Queue

I

T

TCSS422: Operating Systems [Spring 2021]

Hayi 20 20 School of Engineering and Technology, University of Washington - Tacoma

1315

PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma uste

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

=Synchronized access:
sends output from grep > wc as it is produced

= File stream

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)

= Producer “puts” data, Consumer “gets” data

= “‘Bounded Buffer” shared data structure requires
synchronlzation

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma .7

1 int buffer;

2 int count = 0;

3

1 4 put (int value) {

5 assert (count == 0);

6 count = 1;

7 buffer = value;

8)

9

10 int get() {

11 assert (count == 1);

12 count = 0;

13 buffer;

14 }

TCSS422: Operating Systems [Spring 2021]

eyl aran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 11318

Slides by Wes J. Lloyd

L13.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1

2

3 int loops = (int) arg:

4 for (i = 0; i < loops; i++) (
5 put(i);

6)

2)

8

9 void *consumer (v

10 int i7

a1 while (1) {

12 int tmp = get();

13 printf("sd\n", tmp);
14)

15)

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

‘ 113.19 ‘

5/18/2021

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

i cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

% :

6 =05 i< loops; i++) { Producer
g read_mutex_lock (s&mutex); pl
8 (count == 1)

9 Pthread_cond wait(&cond, smutex);

10 put (i) D

11 Pthread_cond_signal (&cond) ;

12 pthread mutex_unlock (smutex) ;

13 }

14 i

15

16 void *consumer(void *arg) {

13 int i;

18 for (i = 0; i < loops; i++) {

19 ? Pthread_mutex_lock (smutex) ; c1

TCS5422: Operating Systems [Spring 2021]

2 P o T T T o e A S T = e

‘ 113.20

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 int tmp = get();

23 Pthread cond_signal (&cond) ;

24 Pthread mutex_unlock (&mutex) ;

25 printf("sd\n", tmp);

26 } Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCS5422: Operating Systems [Spring 2021]

L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 1321 ‘

EXECUTION TRACE: ISSUE: NO WHILE
1 PRODUCER, 2 CONSUMERS, 1 CONDITION

T, | State |T,| State [T, | State | Count Comment
= Two threads <1 | Running Ready Ready 0
2 | Running Ready Ready 0
» 3| Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Running 0
c1 /p1 - lock Sleep Ready p2 | Running 0
c2/p2- check var Sleep Read! p4 | Running 1 Buffer now full
¢3/p3- wait Ready Ready | pS | Running 1 T,y awoken
c4- get() ieady Ready | p6 | Ruming 1
eady Ready | pl | Running 1
p4- put() Ready Ready | p2 | Rumning 1
c5/p5- signal Ready Read» p3 Sleep 1 Buffer full; sleep
c6/p6- unlock Ready[lPcl | Running Sleep 1 T,q sneaks in ..
Ready | c2 | Running Sleep 1
ReadylPc4 | Running Sleep 0 .. and grabs data
Ready | 5 | Running Ready 0 7, awoken
Ready[lPc6 | Running Ready 0
‘ 4 | Running Ready Ready 0 Oh oh! No data

TCS5422: Operating Systems [Spring 2021]

ievil2ran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

‘ 1322 ‘

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is Insufficlent ...
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" T4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

TCS5422: Operating Systems [Spring 2021]

L el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 11323 ‘

EXECUTION TRACE: ISSUE: 1 CONDITION
WHILE, 1 PRODUCER, 2 CONSUMERS

Slides by Wes J. Lloyd

T, | state |1,| state |7, | state [Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1/p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
c3/p3- wait z:eep z:eep p; sunmng g
e ee unnin
c4- get() Slees S\ee:j 24 Runmn: 1 Buffer now full
p4- put() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 T,q grabs data
* 5 | Running Ready Sleep 0 Oops! Woke T,
My on | ISSEEOpI e B gon ocoms | s |

L13.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

WHILE, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

EXECUTION TRACE: ISSUE: 1 CONDITION - 2

Ta| state |r,| state |7, | state |cCount| Comment
Legend 1 - - - - : oty

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
03/p3— wait <2 | Running Ready Sleep 0
c4- get() a3 Sleep Ready Sleep 0 Nothing to get
P4' put() S:eep 2 | Running Sleep 0
C5/P5' signal Sleep 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

‘ 11325 ‘

5/18/2021

TWO CONDITIONS

= Required w/ multiple producer and consumer threads
= Use two condition variables: empty & full

= One condition handles the producer

= the other the consumer

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

= >> Becomes BOUNDED BUFFER, can store multiple matricies

1 cond_t empty, full;
2 mutex_t mutex;
3
4 *producer (void *arg)
5 int i;
6 (i =0; i< loops; it4) {
7 Pthread_mutex_lock (smutex) ;
8 (count == 1)
9 Pthread cond wait (sempty, &mutex);
10 put (i) ; -
11 Pthread_cond signal (i sfull);
12 Pthread mutex_unlock (&mutex);
13 } B B
14 }
15
TC55422; Operating Systems (Spring 2021]
2 P SchoolofE:gineer?ngy:ndTelh‘:\uluggy,Un]iversilyofWashingtoanacuma ‘ 1326 ‘
!
2 nutex_E mutes
3
4 void *producer(void *arg) {
5 int i;
6 for (i =07 i < loops; i++) {
7 Pthread_mutex_lock (smutex) ; .
8 while (count == MAX) p2
9 Pthread_cond_wait (sempty, smutex); p3
10 put (i); p4
1 Pthread_cond_signal (&full); ps
12 Pthread_mutex_unlock (smutex) ; pé
13)
14)
15
16 d *arg) |
17
18 Zor (i =07 i< loops; i++) {
19 Pthread_mutex_lock (smutex) ; c
20 while (Count = 0) c
21 Pthread_cond wait(&full, &mutex); c
22 int tmp = get (); ca
May 23, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 328 ‘

School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

1
2
3
4
B
6 void put(int value) {
7 buffer[fill] = value;
8 £ill = (fill + 1) % MAX;
8 count++;
10 }
11
12 t() {
13 tmp = buffer[use];
14 use = (use + 1) % MAX;
18 count--;
16 rn tmp;
17)
TCSS422: Operating Systems [Spring 2021]
L) School of Engineering and Tec[hzolctggy, Ur\!versi(yu!Washing(un—Ta:oma ‘ 327 ‘
(Cont.)
23 Pthread_cond_signal (sempty) ; c
24 Pthread_mutex_unlock (smutex); c
25 printf("$d\n", tmp);
26 }
27 }
= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty
May 13, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 132 ‘

Slides by Wes J. Lloyd

| |
* Using one condition variable, and no while loop is *

sufficient to synchronize access to a bounded buffer
shared by:

1Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

L13.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

|
* Using one condition variable, with a while loop is "
sufficient to synchronize access to a bounded buffer

5/18/2021

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using two condition variables, and a while loop is *

OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables
= Producer/Consumer

I = Covering Conditions I

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

11333

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L334

COVERING CONDITIONS - 2

1 / 7 many bytes of the heap are free?
2 int bytesLeft = MAX HEAP_SIZE;

3

4 eed lock an i

5 cond t ci

6 mutex_t m;

7

8 oid *

9 allocate (int size) {

pthread mutex_lock (sm) ;

le (bytesLeft < size)
Pthread_cond_wait (&c, &m);

10
11 »
12

Check available memory

13 void *ptr = ...; // get mem from heap
14 bytesLeft -= size;

15 pthread mutex_unlock(sm) ;

16 return ptr;

17)

18

19 void free(void *ptr, int size) {

20 Pthread mutex_lock(sm) ;

bytesLeft += size;

22 <Tihread cond signal (601
23 Pthread mutex_unlock (sm) 7
24 }

TCS5422: Operating Systems [Spring 2021]
L el ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11335

Slides by Wes J. Lloyd

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory
= Each thread evaluates if there's enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1336

L13.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage
= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous
= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about
sharing eating utensils
= Each philosopher tries to obtain two forks

in order to eat /

= Mimics deadlock as there are not enough forks
= Solution is to have one left-handed philosopher
that grabs forks in opposite order

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

(e e Technology, ity i Tacoma

WE WILL RETURN AT
5:14PM

ey (25780 TCSS422: Operating Systems [Spring 2021]
ik School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
|- Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

May 13, 2021 TCS3422: Operating Systems [Spring 2021] 1339

school of Technology, ity ington - Tacoma

CHAPTER 32 -

CONCURRENCY
PROBLEMS

ey (25780 TCSS422: Operating Systems [Spring 2021]
ik School of Engineering and Technology, University of Washington -

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention
= Chapter 13: Address Spaces
= Chapter 14: The Memory API

May 13, 2021 L1341

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri nology, University i Tacoma

May 13, 2021 TC55422: Operating Systems [Spring 2021]

4
School of Technology, ity ington - Tacoma 34z

Slides by Wes J. Lloyd

L13.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

before use

=Qrder violation: failure to initialize lock/condition

TCS5422: Operating Systems [Spring 2021]

el AT o T B i oy ATt A T T

113.43

ATOMICITY VIOLATION - MY

= Two threads access the proc_info field in struct thd
" NULLis 0in C

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1 Threadl::
:
3
. 4 fputs (thd->proc_info , .);

Programmer intended 5

variable to be accessed # 6 }

atomically... 7
g =
9 Ithd»>proc71nfo = N'JLLII

TCSS422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e U344

® Add locks for all uses of: thd->proc_info

ATOMICITY VIOLATION - SOLUTION

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5 if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..);
9 }
10 pthread mutex_unlock (slock);
11

12 Thread2::
13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2021]

L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

113.45

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
void init () {

mThread = PR_CreateThread (mMain, ..);
b

i
2
3
4
5
6 Thread2::
7 void mMain(..) {

8 mState = mThread->State
9

}

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2021]

B
School of Engineering and Technology, University of Washington - Tacoma usde

May 13, 2021

= Use condition & signal to enforce order
1 pthread _mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread _cond t mtCond = PTHREAD_COND_INITIALIZER;
X int mtInit = 0;
4
= Thread 1::
6 0id init () {
7
8 mThread = PR_CreateThread (mMain,..) ;
-]
10 // sig at the thread has been
11 pthread mutex_lock (smtLock) ;
12 mtInit = 1;
13 IEthread cond signal(&mtcond);l
14 pthread_mutex_unlock (smtLock) ;
15
16 }
17
18 Thread2::
19 void mMain(.){
20
TCSS422: Operating Systems [Spring 2021]
L el School of Engineering and Tec[hzolctggy, Ur\!versi(y orWazhingtonaTacoma L1347

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21 // wa to be initialize
22 pthread mutex_lock (smtLock) 7
23 while (mtIpit == _0)
24 | pthread_cond_wait (smtCond, &mtLock); |
25 pthread MUCEX UHTOCK (SMCLOCRT T
26
27 mState = mThread->State;
28
29)
TC55422: Operating Systems [Spring 2021]
I ER e AP e H3a

Slides by Wes J. Lloyd

L13.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCS5422: Operating Systems [Spring 2021]
el AT o T B i oy ATt A T T

113.49

5/18/2021

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 11350

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1) ; lock (L2) —
lock (L2) ; lock(Ll);

= Both threads can block, unless
one manages to acquire both locks

Lock L2
Holds

Wanted by
. =
Aq payuepy, -

&

TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

1351

OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

I = Deadlock causes I

= Deadlock prevention

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

TCS5422: Operating Systems [Spring 2021]
‘ ievil2ran Sehoollof Erineering andTech nolosyiUnersity oWashinatonkTeconta

u3s2 ‘

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCS5422: Operating Systems [Spring 2021]
L el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11353

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

Slides by Wes J. Lloyd

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1354

L13.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
® Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention |

= Chapter 13: Address Spaces
= Chapter 14: The Memory API

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected) {

3 *address = new;

4 return 1; // success

5

6

i

May 13, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1355

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1356

May 13,2021

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount)

int old = *value;
}while (CompareAndswap (value, old, old+amount)==0);

e wn e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

MUTUAL EXCLUSION: LIST INSERTION

® Consider list insertion

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1357

May 13, 2021

1 void insert(int value){
2 node t * n = malloc(sizeof (node_t)):
3 assert(n != NULL);
4 n->value = value ;
5 n->next = head;
6 head =n;
¥ }
May 13, 2021 TCS5422: Operating Systems [Spring 2021] 1358

School of Engineering and Technology, University of Washington - Tacoma

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1 void insert(int value){

2 node_t * n = malloc(sizeof (node_t));
3 assert(n != NULL);

4 n->value = value
5 lock(1listlock) 7
6

i

8

9

n->next = head;
head =n;
unlock(listlock) ;

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int value) {
node_t * loc (sizeof (node_t));
assert (n != NULL);
n->value = value;

n->next = head;
} (CompareAndSwap (&head, n->next, n));

©ao e wn e

i

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1359

May 13, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1360

May 13, 2021

Slides by Wes J. Lloyd

L13.10

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

CONDITIONS FOR DEADLOCK PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention) ;
2 lock(ul):
: } ; : 3 lock(L2):
Mutual Exclusion | Threads claim exclusive control of resources that they require. i -
5 unlock(prevention);

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.
There exists a circular chain of threads such that each thread holds one more = Order doesn’t matter for L1, L2

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Cireularwait resources that are being requested by the next thread in the chain)
= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity
= Encapsulation: consider the Java Vector class...
TCSS422: Operating Systems [Spring 2021] TCSS422: Operating Systems [Spring 2021]
el AT o T B i oy ATt A T T 361 2 P o T T T o e A S T = e U362

CONDITIONS FOR DEADLOCK PREVENTION - NO PREEMPTION

= Four conditions are required for dead lock to occur ®When acquiring locks, don’t BLOCK forever if
unavailable...
“pthread_mutex_trylock() - try once
Mutual Exclusion | Threads claim exclusive control of resources that they require. [] pthread_mutex_timed|0ck() o try and wait awhile
. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources 1 top:
2 lock(Ll) No
*No preemption | Resources cannot be forcibly removed from threads that are holding them. 3 if(trylock(L2) == -1){
4 unlock (L) STOPP'NG
’ . There exists a circular chain of threads such that each thread holds one more o goto tops
Cireular wait ¢ . 3 6 }
resources that are being requested by the next thread in the chain ANY
= Eliminates deadlocks TIME
TC55422: Operating Sy [Spring 2021] TCS5422: Operating S [Spring 2021]
L) School of z:gei::e"r?ngv::m:cn:c:fgy, Universty/clWeshinetontTecome L1363 ievil2ran Sehoo] ofE::i::er:?ngy:;eni""r:ch‘:\:ngy, University of Washinaton® Tacoma 364

NO PREEMPTION - LIVELOCKS PROBLEM CONDITIONS FOR DEADLOCK

= Can lead to livelock = Four conditions are required for dead lock to occur
1 top:
2 lock(L1) ;
£) if(trylock(L2) == -1){ e =
i Lok Condition Description
2 i goto top; Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

= Two threads execute code in parallel > Hold-andowalt: | poities
always fail to obtain both locks

No preemption | Resources cannot be forcibly removed from threads that are holding them.

= Fix: add random delay

=Allows one thread to win the
livelock race!

ChclE There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2021]

L el Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

L1365

TCSS422: Operating Systems [Spring 2021]
‘ eyl aran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

L1366

Slides by Wes J. Lloyd L13.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

5/18/2021

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

‘ May 13, 2021 ‘ TCSS422: Operating Systems [Spring 2021] 367

School of Engineering and Technology, University of Washington - Tacoma

Circular wart resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e 1368

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler
=Scheduler knows which locks threads use

® Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

®Lock requirements of threads:

TCS5422: Operating Systems [Spring 2021]

ievil2ran ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

113.70

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

e =

cPU 2 T2 ‘

= No deadlock can occur

= Consider:
L1 yes yes yes no
[| yes | yes | yes | o |
TCSS422: Operating Systems [Spring 2021]
L el ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms us71

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCS5422: Operating Systems [Spring 2021]

eyl aran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

1372

Slides by Wes J. Lloyd

L13.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

DETECT AND RECOVER

action.
= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day

recovery techniques.

= Consider the effort tradeoff of finding every deadlock bug

= Allow deadlock to occasionally occur and then take some

= Many database systems employ deadlock detection and

May 13, 2021

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri inology, University i Tacoma

11373

OBJECTIVES - 5/13

= Questions from 5/11
= Assignment 2
= Quiz 3 - Synchronized Array
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
| = Chapter 13: Address Spaces |
= Chapter 14: The Memory API

May 13, 2021 TC55422: Operating Systems [Spring 2021]

School of Technology, University ington - Tacoma 374

CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Spring 2021]

Maviiizn2e School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/13

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

May 13, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi - Tacoma L1376

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

TCS5422: Operating Systems [Spring 2021]
hool of Engineeri i

[y e chnology, ity i Tacoma

11377

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox
Process A

Process B Process C

TCS5422: Operating Systems [Spring 2021]
e

School of Technology, University of Washi Tacoma Ls.78

May 13, 2021

Slides by Wes J. Lloyd

L13.13

TCSS 422 A — Spring 2021 5/18/2021

School of Engineering and Technology

MOTIVATION FOR

MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

EARLY MEMORY MANAGEMENT

®Load one process at a time into memory

= Poor memory utilization ok T
el ST
= Little abstraction e Gmbens)
Current
Program
(code, data, etc.)
-

Physical Memory

TCS5422: Operating Systems [Spring 2021]

7
School of Engineering and Technology, University of Washington - Tacoma L1379

May 13, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1380

May 13,2021

MULTIPROGRAMMING

WITH SHARED MEMORY

= Later machines supported running multiple KB

Operating System
processes ek | teode,data etc)
= Swap out processes during 1/0 waits to Frea
increase system utilization and efficiency 226K, s
= Swap entire memory of a process to disk sookp | code: dataetc)
for context switch sl
. 256KB —
= Too slow, especially for large processes e
3208 b A
. rocess
= Solution> (code, data, etc)
. 384KB
= Leave processes in memory Foe
448KB
= Need to protect from errant memory f— o

accesses in a multiprocessing environment Physical Memory

ADDRESS SPACE

= Easy-to-use abstraction of physical
memory for a process

Program Code
1KB

Heap

2KB l

" Main elements:

=Program code (ree)
=Stack
- H €2 p 15KB T
Stack
16KB

lExampIe: 16KB address space Address Space

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1381

May 13, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 382

May 13, 2021

ADDRESS SPACE - 2

= Code
0KB
= Program code Program Code
1KB
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
(free)
= Parameter variables -
= Return values (for functions) T
15k8
= Heap Stack
= Dynamic storage L6KE ‘Address Space

= Malloc() new()

ADDRESS SPACE - 3

= Program code

= Static size iy e el
K8
Heap
= Heap and stack 2xB
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends 4o
= Addresses are virtual T
= They must be physically mapped by the 0S K8 Stack
16KB

Address Space

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1383

May 13, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1384

May 13, 2021

Slides by Wes J. Lloyd

L13.14

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

VIRTUAL ADDRESSING VIRTUAL ADDRESSING - 2
Address Space
= Every address is virtual = Output from 64-bit Linux: e Code
(Text)
= 0S translates virtual to physical addresses location of code: Ox400686 oonee0 o
e s location of heap: 0x1129420 0xcf2000 Hep
AT SR location of stack: 0x7ffe040d77e4 S l
int main(int argec, char *argv(]){ heap
printf("location of code : $p\n", (void *) main);
printf("location of heap : $p\n", (void *) malloc(l)):
int x = 3; (free)
printf("location of stack : $p\n", (void *) &x);
return x; stack
}
=EXAMPLE: virtual.c ot Stack
0x7ff9ca49000
Mevis s IS S Byt vtingon- o N =1
GOALS OF GOALS - 2
0S MEMORY VIRTUALIZATION
= Transparency = Efficiency
= Memory shouldn’t appear virtualized to the program =Time
= 0S multiplexes memory among different jobs behind the Performance: virtualization must be fast
scenes
=Space

Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

= Protection

= |solation among processes
= 0S itself must be isolated

= One program should not be able to affect another))
(or the 0S) = Goals considered when evaluating memory

virtualization schemes

May 13, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

. . 11387 May 13, 2021 TC55422: Operating Systems [Spring 2021]
nology, v Tacoma f

School of Technology, University of Washi Tacoma L1388

OBJECTIVES - 5/13

= Questions from 5/11

= Assignment 2

= Quiz 3 - Synchronized Array

= Chapter 30: Condition Variables

= Producer/Consumer CHA PTER 14: THE

= Covering Conditions
= Chapter 32: Concurrency Problems M EMORY API
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention
= Chapter 13: Address Spaces
IIChapter 14:The Memory API I
I e ——

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington -

113.89

WMay 13, 2021

Slides by Wes J. Lloyd L13.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

OBJECTIVES - 5/12

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
" size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 392

May 13,2021

TCSS422: Operating Systems [Spring 2021]
May 13, 2021 e e > A LAty . T L1391
= Not safe to assume int *x = malloc(10 * sizeof (int));
. . printf (“$d\n”, sizeof(x));
data type sizes using
different compilers, | 4
systems

= Dynamic array of 10 iny int x[10;
printf (“%d\n”, sizeof(x));

= Static array of 10 ints [e
TCSS422: Operating Systems [Spring 2021]
(e, 2 ool o Engineeri chnology, University Tacoma L1393

FREE()

#include <stdlib.h>

void free(void+* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1394

May 13, 2021

#include<stdio.h>

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int main()

int ¥ X = NULL;

X = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

95

#include<stdio.h>
What will this code do?
int * set_magic_number_a()

int a =53247;
return &a; put:
$./pointer_error
The magic number is=53247

\foid set_magic_number_b() R S P R
int b = 11111;

We have not changed *x but
the value has changed!!

int main()

int * x = NULL; Why?
X = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf("The magic number is=%d\n“,*x);
return 0;

Slides by Wes J. Lloyd

L13.16

TCSS 422 A — Spring 2021
School of Engineering and Technology

5/18/2021

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (2/2)

=Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function “int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of Tlocal
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1397

May 13, 2021

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1398

May 13,2021

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size_t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size_t size

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 113100

May 13, 2021

TCS5422: Operating Systems [Spring 2021]
v 202t ‘ e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome L1399
int *x = (int *)malloc(sizeof(int)); a cate:
free(x); // free memory
free(x); ree e

= Can’t deallocate twice
= Second call core dumps

2KB 2KB

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

allocated freed <
l Heap i Heap | |
free (x) I free(x)
(free) — (free) | —*
1 L]
_— K8 w e | 2KBwalld) [
‘Address Space Address Space
TCS5422: Operating Systems [Spring 2021]
L el ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L3101

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma 113102

May 13, 2021

Slides by Wes J. Lloyd

L13.17

TCSS 422 A — Spring 2021 5/18/2021
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L13.18

