TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
'wZ'“ ‘

Lock-based data structures, &
Midterm review

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Mayilie2t School of Engineering and Technology, University of Washington [fll Tacoma

5/11/2021

OBJECTIVES - 5/4

| = Questlons from 5/4 |
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]
2 P e T T T o ey A T = TPy

122

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021
Home

Announcements

- + Upcoming Assignments
Sylbhis | < TCSS 422 - Online Daily Feedback Survey - 4/1 |
: Avallable unti Ar 33t 11:59pm | Due Apr 3 3t10pm. | 71 pts
Dicriiccinne o Y Py
v [

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 ospts
Onascale of 1to 10, p ify your perspecti in today’s
class:

1 2 3 a4 s 6 7 8 9 10

Wosely Equal Hostly

Review To e New and Review Hew to He
Question 2 05pts

Please rate the pace of today’s class:

kS TCSS422: Computer Operating Systems [Spring 2021]
ik School of Engineering and Technology, University of Washington - Tacoma

L124

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (57 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.99 ({ - previous 6.89)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.36 ({ - previous 5.85)

May 11, 2021 TCS5422: Computer Operating Systems [Spring 2021]

School of Engi u2s

Tacoma

FEEDBACK

= Least clear polnts: blocking and non-blocking functions

= Blocking API: stops thread/process execution, waits for an
event (resource to become available such as the lock, etc.)

= Blocking APIs are C Linux kernel calls

= Non-blocking API: ordinary APls that do not block
process/thread execution to wait for a resource

= May not be a C Linux kernel call

TCSS422: Operating Systems [Spring 2021]
ieviligaran Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

126

Slides by Wes J. Lloyd

L12.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

FEEDBACK - 2

= SLOPPY COUNTER REVIEW

= What Is the way to fInd reasonable (or stable)
sloppy threshold (S)?

highest and lowest sloppy threshold (S)?

= Should we just select a number In the middie between the

5/11/2021

May 11, 2021 TCS8422; Operating Systems [Spring 2021])
hool of nology, y - Tacoma

u27

OBJECTIVES - 5/4

= Questions from 5/4
|- Midterm Results |
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 11, 2021 L1238

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
|I Assignment 1 - May 11 |
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11

| = Qulz 3 - Synchronlzed Array |

TCS5422: Operating Systems [Spring 2021]
L) ‘ e oolol Enginearins erdiechnolonyiUnve ity S = TR

112.10

= Chapter 29: Lock Based Data Structures

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

May 11, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washington - Tacoma 2

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
I- Concurrent Structures: Linked List]Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]
L) ‘ SeFoo[of Enginearing andiechnolonyiUnve sty S = TR

1212

Slides by Wes J. Lloyd

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2021]

vl z024 School of Engineering and Technology, University of Washington -

L12.2

TCSS 422 A — Spring 2021

School of Engineering and Technology

= Structs and initialization:

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown

School of Engineering and Technology, University of Washington - Tacoma

1
2
3
4 struct _ node_t *next;
5 } node_t;
6
0 st structure (one
8 t struct _list_t {
9 node_t *head:
10 pthread_mutex_t lock:
1 } List_t;
12
13 void List_Init(list_t *L) (
14 I->head = NULL;
15 pthread_mutex_init (sL->lock, NULL):
16 }
17
(cont.)
May 11, 2021 TCS5422: Operating Systems [Spring 2021] ‘ 21 ‘

5/11/2021

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
= Everything is critical!

= There are two unlocks

(Cont.)
18 t List_Insert (list_t *I, key) {
19 pthread mutex_lock (sL->lock) ;
20 node_t *new = malloc(sizeof (node_t)):
21 if (new == NULL)
22 perror ("malloc”) ;
23 pthread mutex_unlock(&L->lock) ;
24 return -1; // fail }
26 new->key = key:
27 new->next = L->head;
28 L->head = new;
29 pthread_nmutex_unlock (sL->10ck) ;
30 return 0; // suc
31
(Cont.)
May21) 2021 TCSS422: Operating Systems [Spring 2021] ‘ s ‘

School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32
32 List_Lookup (list_t *L, int key) {
33 pthread mutex_lock (sL->lock) ;
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex_unlock (&L->lock) ;
38 et
39 }
40 curr = curr->next;
a1
12 pthread mutex_unlock (sL->lock) ;
13 return -1;
14)
May 11, 2021 TCS5422: Operating Systems [Spring 2021] ‘ 1216 ‘

School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST

= First Implementation:

= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error

prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding

practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCS5422: Operating Systems [Spring 2021]
2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

‘ L1217 ‘

CCL - SECOND IMPLEMENTATION

® |nit and Insert

i s0id List_Init(list_t *L) {
2 L->head = NULL;
3 pthread_mutex_init(&L->lock, NULL);
4 }
5
6 void List_Insert(list_t *L, int key) {
g r on ot ne: i
8 node_t *new = malloc(sizeof (node_t));
8 if (new == NULL) {
10 perror ("malloc™) ;
1 eturns
12 }
13 new->key = key:
14
15 / just lock cri n
16 pthread_mutex_lock (sL->lock) ;
17 new->next = L->heads
18 L->head = new;
19 pthread mutex_unlock(sL->lock);
20 i
21
May 11, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 218 ‘

School of Engineering and Technology, University of Washington - Tacoma

CCL - SECOND IMPLEMENTATION - 2

School of Engineering and Technology, University of Washington - Tacoma

= Lookup
(cont.)
22 t List_Lookup(list_t *L, int key) {
23 Tint rv = -1
24 pthread mutex_lock(sL->lock);
25 node_t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 break;
30 }
31 curr = curr->next;
32
33 pthread_mutex_unlock (&L->lock) ;
34 return Tv; // now bo an
35)
May11) 2021 TCSS422: Operating Systems [Spring 2021] ‘ 215 ‘

Slides by Wes J. Lloyd

L12.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

5/11/2021

TCSS422: Operating Systems [Spring 2021]
May 11, 2021 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]
2 P e T T T o ey A T = TPy

1221

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11222 ‘

CONCURRENT QUEUE

= Remove from queue

1
2
3
1
5
3 typedef struct _queue t {
7 node_t *head;
8 node_t *tail;
9 pthread mutex_t headLock:
10 pthread mutex_t tailLock;
11 } queue_t;
12
13 void Queue_Init(queue_t *q) {
14 node_t *tmp 1loc(sizeof (node_t)) 7
15 tmp->next = NULL;
16 q->head = g->tail = tmp;
17 pthread mutex_init (sq->headLock, NULL);
18 pthread_mutex_init (sq->taillock, NULL):
19 i
20
(cont.)

May 11, 2021 TCS5422: Operating Systems [Spring 2021] 1223

School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21 void Queue Enqueue(queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock (sq->tailLock);
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock) ;
32 }
(Cont.)
May 11, 2021 TCS5422: Operating Systems [Spring 2021] 1224

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
® Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue,
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Spring 2021]
ieviligaran Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

11225

Slides by Wes J. Lloyd

L12.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENT HASH TABLE

= Consider a simple hash table

=Fixed (static) size

=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

5/11/2021

May 11, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

11226

INSERT PERFORMANCE

CONCURRENT HASH TABLE

®= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
O Simple Concurrent List
X Concurrent Hash Table
o
210
s
8
2
R
o
E 5
£
0 F ol ¥ ol
0 10 20 30 40

Inserts (Thousands)

scales

Systems [Spi

May 11,2021 ing and Technolo

rsity of Washington - Tacoma

CONCURRENT HASH TABLE

1 e BUCKETS (101)
2
3 £ struct _ hash t {
4 list_t lists[BUCKETS]:
5 } hash_t;
3
7 id Hash_Init(hash_t *H) {
8 int iz
9 for (i = 0; i < BUCKETS; i++) {
10 List_Init (sH->lists[i]);
11 }
12 }
13
14 int Hash_Insert(hash_t *H, int key)
15 bucket = key $ BUCKETS;
16 return List_Insert (sH->lists[bucket], key);
17)
18
19 int Hash_Lookup (hash_t *H, int key) {
20 “int bucket = key % BUCKETS;:
21 return List_Lookup (sH->lists[bucket], key):
22)
May 11, 2021 TCS5422: Operating Systems [Spring 2021] 1228

School of Engineering and Technology, University of Washington - Tacoma

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

| |
Which is a major advantage of using concurrent data
structures in your programs?

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:
= AtomicBoolean

Atomiclnteger
AtomiclntegerArray
AtomicintegerFieldUpdater
AtomiclLong
AtomicLongArray
AtomicLongFieldUpdater
AtomicReference

= See: https://docs.oracle.com/en/]ava/]avase/11/docs/apl/

TCS5422: Operating Systems [Spring 2021]
L) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

Slides by Wes J. Lloyd

OBJECTIVES - 5/4

= Questions from 5/4

= Midterm Results

= Assignment 1 - May 11

® Quiz 3 - Synchronized Array

= Chapter 29: Lock Based Data Structures

= Concurrent Structures: Linked List, Queue, Hash Table

I = Chapter 30: Condltlon Varlables I

= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 11, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

1231

L12.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Spring 2021]

Mavtiznat School of Engineering and Technology, University of Washington -

5/11/2021

CONDITION VARIABLES

" There are many cases where a thread wants to
wait for another thread before proceeding with
execution

®Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

May 11, 2021 ms«uz; Operating Systems [Spring 2021]

School of Technology, University i Tacoma

11233

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFO) queue to WAIT for signals

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

May 11, 2021

TCSS422: Operating Systems [Spring 2021] 11234
hool of Engineeri i |

nology, ity ington - Tacoma

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread_cond wait(pthread cond t *c, pthread mutex t *m); //
pthread_cond_signal (pthread_cond_t *c); //

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

May 11, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

1235

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

May 11, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

chnology, ity i Tacoma L1236

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer |

= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 11,2021

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University of Washington - Tacoma

11237

Slides by Wes J. Lloyd

L12.6

TCSS 422 A — Spring 2021 5/11/2021
School of Engineering and Technology

MATRIX GENERATOR MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
®" The main thread consumes the matrix
= Calculates the average element
= Display the matrix
Matrix generation example
= What would happen if we don’t use a condition variable to

i 2
Chapter 30 coordinate exchange of the lock?

signal.c .
= Example program: “nosignal.c”

TCS5422: Operating Systems [Spring 2021]

2 P o T T T o e A S T = e 1239

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

11238

May 11, 2021

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT PRODUCER / CONSUMER

o void thr_exit() { € Child calls

% done = 1;

3 Pthread_cond_signal (&c);

4 ¥

5

6 void thr_join() { € Parent calls

7 if (done == 0) Work Queue
Lt

Pthread_cond wait (s&c);
| . :
® Subtle race condition introduced %

= Parent thread calls thr_JoIn() and executes comparison (line 7)
= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost!
= The parent deadlocks

TCSS422: Operating Systems [Spring 2021]

TCS$422: Operating Systems [Spring 2021]
asyiLLTZ02 School of Engineering and Technology, University of Washington - Tacoma L1241

School of Engineering and Technology, University of Washington - Tacoma Lz40

May 11, 2021

PRODUCER / CONSUMER PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Producer

= Produces items - e.g. child the makes matricies

= Places them in a buffer = Bounded buffer

Example: the buffer size is only 1 element (single array pointer) =Similar to piping output from one Linux process to another

= Consumer = grep pthread signal.c | wc -1

= Grabs data out of the buffer =Synchronized access:

= Our example: parent thread receives dynamically sends output from grep > wc as it is produced

generated matrices and performs an operation on them =File stream

Example: calculates average value of every element (integer)

= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Spring 2021]

ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 243

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1242

May 11, 2021

Slides by Wes J. Lloyd L12.7

TCSS 422 A — Spring 2021
School of Engineering and Technology

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2021]

Mavtiznat School of Engineering and Technology, University of Washington -

5/11/2021

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data, Consumer “gets” data
= “‘Bounded Buffer” shared data structure requires

synchronlzation
1 int buffer;
2 int count = 0; initially,
3
4 void put(int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0;
13 return buffer;
14 }
TCSS422: Operating Systems [Spring 2021]
May 11, 2021 School of Engineering and Technology, Universi ington - Tacoma ‘ Hze ‘

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

PRODUCER / CONSUMER - 3

2 void *producer(void *arg) (
2 int i;
3 int loops = (int) arg;
4 for (i = 07 i < loops; i++) {
5 put(i);
6)
2)
8
9 void *consumer(void *arg) (
10 int i;
11 while (1) {
12 int tmp = get()s
13 printf ("sd\n", tmp);
14)
15)
TCSS422: Operating Systems [Spring 2021]
May 11, 2021 hool of perating Sy Techfmlfw versity . - ‘ L12.46 ‘

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

cond_t cond;
mutex_t mutex;

T

2

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) { Producer
7 * Pthread_mutex_lock (smutex) ; 1

8 if (count == 1)

9 Pthread cond_wait(&cond, smutex);
10 put (i) D
1 Pthread_cond_signal (scond) ;
12 Pthread_mutex_unlock (smitex)
13 }
14)
15
16 void *consumer (void *arg) (
13 iz
18 (i=0; i< loops; i++) {
19 9 Pthread_mutex_lock (smutex) ; c1
TCSS422: Operating Systems [Spring 2021]
May 11, 2021 Sehontof Eogetnim s Tevhtasn poer ington - Tacoma ‘ 12 ‘

PRODUCER/CONSUMER - 4

20 f (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 int tmp = get ()7

23 Pthread_cond_signal (&cond) ;

24 Pthread mutex_unlock (&mutex) ;

25 printf("%d\n", tmp);

26) Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

= PROBLEM: no while. If thread wakes up it MUST execute

May 11, 2021 TCS5422; Operating Systems [Spring 2021]
hool of

Technology, ity i Tacoma

‘ 11248 ‘

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

T, | State |T,| State |7, | state |Count| Comment
= Two threads <1 | Running Ready Ready 0
@ | Rumning Readly Ready 0
» G| Slep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Rumning 0
c1/p1-lock Sleep Ready p2 | Running 0
c2/p2- check var Sleep Read) p4 | Running 1 Buffer now full
¢3/p3- wait iea:y iea:y pz :unnmg i 7,, awoken
eady eady | p unning
c4- put() Ready Ready | pl | Running 1
p4- get() Ready Ready | p2 | Rumning 1
c5/p5- signal Ready Read» p3 | Sleep 1 Buffer full; sleep
c6/p6- unlock ReadylPcl | Running Sleep 1 T,y sneaks in ..
Ready | <2 | Rumning Sleep 1
ReacyllPc4 | Running Sleep 0 ...and grabs data
Ready | <5 | Rumning Ready 0 7, awoken
ReacyllP <6 | Running Ready 0
» 4 | Running Ready Ready 0 Oh oh! No data

May 11, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma

[e |

Slides by Wes J. Lloyd

L12.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is Insufficlent ...
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" Te4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

TCS5422: Operating Systems [Spring 2021]

L) AT o T B i oy ATt A T T

‘ 11250 ‘

5/11/2021

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty | state |r,| state |7, | state [Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
03/p3- Wait z:eep z:eep p; Zunmng (O)
eep eep | unning
c4- put() Sleep Sleep p4 | Running 1 Buffer now full
p4- get() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 T,, grabs data
* 5 | Running Ready Sleep 0 Oops! Woke T,
Myt aon | ISSERpI e B on ocoms [s |

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

Ta| state |r,| state |7, | state |cCount| Comment
Legend o] | = | o= | oty

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait <2 | Running Ready Sleep 0
c4- put() =] Sleep Ready Sleep 0 Nothing to get
p4_ get() S:eep <2 | Running Sleep 0
05/p5— signal Sleep 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Spring 2021]

L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

‘ 11252 ‘

TWO CONDITIONS

= Required w/ multiple producer and consumer threads

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

1 cond_t empty, full;

2 mutex_t mutex;

3

4 *producer (void *arg) {

5 int if

6 (i = 0; i< loops; i++) {

7 Pthread mutex_lock (&mutex) ;
8 (count)

9 Pthread cond wait (sempty, &mutex);
10 put (i) ;

11 Pthread_cond_signal (i afull);
12 Pthread_mutex_unlock (smutex) ;
13 }

14)

15

TCS5422: Operating Systems [Spring 2021

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= >> Becomes BOUNDED BUFFER, can store multiple matricies

1
2
3
4
B
6 i put (int value) {
7 buffer[fill] = value;
8 £i11 = (£i11 + 1) % MAX:
8 count++;
10 }
1
12 et (
13 tmp = buffer[use];
14 = (use + 1) % MAX;
15 count--7
16 rn tmps
17 }
May 11, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 25 ‘

School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma ‘ 253 ‘
!
2 nutex_E mutes
3
4 void *producer(void *arg) {
5 int
6 £ ;i< loops: it+) {
7 Pthread_mutex_lock (smutex) ; pl
8 while (count == MAX) p2
9 Pthread_cond_wait (sempty, smutex); p3
10 put (i); p4
1 Pthread_cond_signal (&full); ps
12 Pthread_mutex_unlock (smutex) ; pé
13)
14)
15
16 void *consumer(void *arg) {
17 i
18 Zor (i =07 i< loops; i++) {
19 Pthread_mutex_lock (smutex) ; c
20 while (Count = 0) c
21 Pthread_cond_wait(sfull, &mutex); c
22 int tmp = get();) ca
May11) 2021 TCSS422: Operating Systems [Spring 2021] ‘ 25 ‘

Slides by Wes J. Lloyd

L12.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

(cont.)

23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("sd\n", tmp);

26)

27)

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

5/11/2021

TCS5422: Operating Systems [Spring 2021]

L) AT o T B i oy ATt A T T

11256

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using one condition variable, and no while loop is *

shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

|
* Using one condition variable, with a while loop is "
sufficient to synchronize access to a bounded buffer

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using two condition variables, and a while loop is *

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
® Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
| = Covering Conditlons |
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]

L) e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

11260

Slides by Wes J. Lloyd

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

TCS5422: Operating Systems [Spring 2021]

ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

L2561

L12.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

COVERING CONDITIONS - 2

5/11/2021

20 Pthread mutex_lock (&m) ;

bytesLeft += e;
22 <TEhread cond signal (&c; //| Broadcast
23

Pthread mutex_unlock (sm);
24 }

i // how many bytes of the heap are free?

2 int bytesLeft = MAX HEAP_SIZE;

3

4 e too

5 cond_t c;

6 mutex_t m;

7

8 void *

9 allocate (int size) {

10 pthread mutex_lock(sm);

11 ’xnnc (bytesLeft < size) Check available memory
12 Pthread_cond_wait (&c, &m);

13 nem from hea
14 e;

15 pthread mutex_unlock(sm) ;

16 return ptr;

17 }

18

19 void free(void *ptr, int size) {

TCS5422: Operating Systems [Spring 2021]
L) ‘ e i BT T MR e st f T

11262

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory
= Each thread evaluates if there's enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
= Insufficient memory
= Run: requests which can be fulfilled
= with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Spring 2021]
2 P e T T T T g ey f T

11263 ‘

AT ~2:40PM

e i 53] TCSS422: Operating Systems [Spring 2021]
y 11, School of Engineering and Technology, University of Washington -

TCSS 422 WILL RETURN %

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about \ '”/
sharing eating utensils @ \ % 9
i ¥

= Each philosopher tries to obtain two forks LB

in order to eat / a~ \
= Mimics deadlock as there are not enough forks "
= Solution is to have one left-handed philosopher < &1

that grabs forks in opposite order

May 11, 2021 n:s«uz; Operating Systems [Spring 2021]

School of Technology, ity i Tacoma L1265

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
| = Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

‘ May 11, 2021 TCSS4|22;Ope_raling Systems [Spring 2021]

School o Technology, ity ington - Tacoma

L1266

Slides by Wes J. Lloyd

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2021]
Maiiizoz School of Engineering and Technology, University of Washington -

L12.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

5/11/2021

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
May 202 | e and et Unkerty of Washingtan-Tacoma u2es

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
= Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
| = Non-deadlock concurrency bugs |
= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 11, 2021 11269

NON-DEADLOCK BUGS

ATOMICITY VIOLATION - MYSQL

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

112.70

= Two threads access the proc_info field in struct thd
" NULL is O in C

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1 Threadl::
:
3
. 4 fputs (thd->proc_info , .);

Programmer intended 5

variable to be accessed 6 }

atomically... 7
g =
9 Ithd»>proc71nfo = N'JLLII

TCSS422: Operating Systems [Spring 2021]
2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 1271

ATOMICITY VIOLATION - SOLUTION

" Add locks for all uses of: thd->proc_info

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5 if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..):

10 pthread mutex_unlock (slock);

12 Thread2::

13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2021]
L) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

1272

Slides by Wes J. Lloyd

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
void init () {

mThread = PR_CreateThread (mMain, ..);
b

i
2
3
4
5
6 Thread2::
7 void mMain(..) {

8 mState = mThread->State
9

}

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2021]

ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

1273

L12.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND_INITIALIZER:
3 int mtInit = 0;

4

5 Thread 1::

6 0id init(){

7

8 mrhread = PR_CreateThread (mMai.

9

10 // s that the thread

11 pthread mutex_lock (smtLock) ;

12 mtInit = 1;

13 [(pthread cond signal (smtcond) 7]

14 pthread mutex_unlock(&mtLock)

15

16)

17

18

19

20

TCS5422: Operating Systems [Spring 2021]

L) AT o T B i oy ATt A T T

11274

5/11/2021

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21 // wait for the thread to be initialized
22 pthread mutex_lock (smtLock) 7
23 while (mtIpit == _0)
24 | pthread_cond_wait (smtCond, &mtLock); |
25 pthread MUCEX UHTOCK (SMCLOCRT T
26
27 mState = mThread->State;
28
29)
May 11, 2021 TCS5422: Operating Systems [Spring 2021] 1275

School of Engineering and Technology, University of Washington - Tacoma

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCS5422: Operating Systems [Spring 2021]

L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11276

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

TCS5422: Operating Systems [Spring 2021]

2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

1277

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock(L1); lock (L2):
lock (L2); lock(L1):
2
= Both threads can block, unless Tg
one manages to acquire both locks 2
Lock L2
Holds

e

H
g
2
g
T
g

TCS5422: Operating Systems [Spring 2021]

L) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

=

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
® Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

= Deadlock causes]

= Deadlock prevention

TCS5422: Operating Systems [Spring 2021]

ieviligaran Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

1279

Slides by Wes J. Lloyd

L12.13

TCSS 422 A — Spring 2021
School of Engineering and Technology

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

5/11/2021

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

TCS5422: Operating Systems [Spring 2021]

L) AT o T B i oy ATt A T T

112.80

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e 281

OBJECTIVES - 5/4

= Questions from 5/4
= Midterm Results
= Assignment 1 - May 11
® Quiz 3 - Synchronized Array
= Chapter 29: Lock Based Data Structures
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention |
TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma w282

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected) {

3 *address = new;

4 return 1;
5

6

i

TCS5422: Operating Systems [Spring 2021]

2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma

112.83

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

tomicIncrement (int *value, int amount) {

int old = *value;
& (CompareAndswap (value, old, old+amount)==0);

e wo e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2021]

L) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

L1284

Slides by Wes J. Lloyd

MUTUAL EXCLUSION: LIST INSERTION

® Consider list insertion

r0id insert (int value){
node t * n = malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
n->next = head;
head =n;

S me wo e

TCS5422: Operating Systems [Spring 2021]

ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

11285

L12.14

TCSS 422 A — Spring 2021
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

void insert (int value){
node t * malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
lock (listlock) ; begin critical section
n->next = head;
head =n;
unlock (listlock) 7

e

5/11/2021

TCS5422: Operating Systems [Spring 2021]
L) AT o T B i oy ATt A T T

11286

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int value) {
node_t *n = malloc(sizeof (node t));
assert (n != NULL);

n->value = value;
{
n->next = head;
} (CompareAndSwap (shead, n->next, n));

PN

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS5422: Operating Systems [Spring 2021]
2 P o T T T o e A S T = e

112.87

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
L) e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome 288

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention);
2 lock(wl):

3 lock(n2);
4
5

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

May 11, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1289

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Descripti

n

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

»No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
L) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1290

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

mpthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
2 lock(Ll); N 0
3 if(trylock(L2) == -1){
4 unlock(Ll);
5 STOPPING
6 i

= Eliminates deadlocks TIME

TCSS422: Operating Systems [Spring 2021]
ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma 1291 ‘

Slides by Wes J. Lloyd

L12.15

TCSS 422 A — Spring 2021
School of Engineering and Technology

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:

lock(L1)

if (tryLock(L2) == -1){
unlock(Ll) }
goto tops

s

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

TCS5422: Operating Systems [Spring 2021]

L) AT o T B i oy ATt A T T

112,92

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

5/11/2021

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

*C\'r:u\arwa\'t

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1293

‘ May 11,2021

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

May 11, 2021 ‘ TCS5422: Operating Systems [Spring 2021] 29

School of Engineering and Technology, University of Washington - Tacoma

Condition

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wart resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2021]
2 P ISehool of Erineering andTech nolosyjUniversity cWashinaton S Tacoma 1295

Mutual Exclusion

The dining philosophers problem where 5
philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Hold-and-wait
No preemption
Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

EConsider a smart scheduler
=Scheduler knows which locks threads use

® Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

® Lock requirements of threads:

TCS5422: Operating Systems [Spring 2021]

ieviligaran I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

112,97

Slides by Wes J. Lloyd

L12.16

TCSS 422 A — Spring 2021 5/11/2021
School of Engineering and Technology

INTELLIGENT SCHEDULING - 2 INTELLIGENT SCHEDULING - 3
mScheduler produces schedule: = Scheduler produces schedule
CPU 1

CPU 2

mNo deadlock can occur = Scheduler must be conservative and not take risks
= Slows down execution - many threads
= Consider:
= There has been limited use of these approaches given the
L ves yes yes no difficulty having intimate lock knowledge about every
‘ L2 ‘ yes ‘ yes | yes ‘ no ‘ thread
May 11, 2021 ‘ch‘i:fg;""e."“"?“m’"s lsf‘j:f;'n! %) Tacoma 11298 May 11, 2021 ;ﬁz‘;ﬁ;DPE.“‘i“?SV“e"}:g‘:"::f;yf’“!)) Tacoma 1299

DETECT AND RECOVER

QUESTIONS

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

May 11, 2021

TCSS422: Operating Systems [Spring 2021] 112.100
hool of Engineeri i -

nology, ity ington - Tacoma

Slides by Wes J. Lloyd L12.17

