
TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.1Slides by Wes J. Lloyd

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Linux Thread API II, Locks,
Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

OBJECTIVES – 4/29

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 29, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

ONLINE DAILY FEEDBACK SURVEY

April 29, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L10.4

 Please classify your perspective on material covered in today’s
class (57 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56 ( - previous 6.90)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.73 ( - previous 5.52)

April 29, 2021 TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.5

MATERIAL / PACE

 Does using mutex cause problems with running things in parallel?
 In C, locks are called pthread_mutex

 Using mutex (locks) in fact SOLVES problems running things in parallel

 Locks synchronize access to critical sections of code that MODIFY
shared variables

 If these sections ARE NOT SYNCHRONIZED this leads to RACE
CONDITIONS, and the intended changes to your variables may not be
SAVED

 These can lead to program errors and bugs are varying severity

 In particular these errors can be hidden and hard to see:
Realizing data is corrupted can often be hard

 I have to re -watch some of the lectures, some things were not
making any sense at a l l .
 Please do ask any questions if/when they arise..

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

FEEDBACK

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.2Slides by Wes J. Lloyd

 Would you rev iew about L inux nice-value?
 Nice/renice command is used to influence a job’s priority in Linux
 Nice predates the CFS scheduler

 Top shows nice values
 Nice vals w/ ps: ps ax -o pid,ni,cmd,%cpu, pri
 Nice values: -20 (HIGH priority) to 19 (LOW priority)
 Default value is 0
 Nice value influences the vruntime value of a job
 vruntime is a weighted time measurement
 Linux process priority weights the calculation of vruntime

within a runqueue to impact the priority of a job (+ / -)
 Influences job’s position in rb-tree

 Nice is used to launch a new job with a priority adjustment
 Renice is used to adjust priority of an existing job

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

FEEDBACK - 2 Duplicate Question
From Previous

Class …
 Find PID for Vir tualBox

ps ax -o pid,ni,cmd,%cpu,pri | grep virtualbox

 Monitor process priority in top

top –d .1

 Adjust process priority using renice:

High priority

sudo renice –n -20 –p <pid>

Default priority

sudo renice –n 0 –p <pid>

Low pr iori ty

sudo renice –n 19 –p <pid>
April 29, 2021 TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma
L10.8

NICE / RENICE

 How do lottery or str ide schedulers optimize a job’s
response t ime and turnaround time?

 These schedulers are designed to distribute time to jobs based
on the number of tickets a job has

 The user is responsible for assigning tickets
 Resource sharing will mimic round-robin scheduling if all jobs

have the exact same number of tickets
 Stride scheduler will achieve round-robin like fairness more quickly
 Lottery scheduler requires more scheduling events & time

 The round robin scheduler is excellent at job response time
 Each job shares the resource for a fixed time quantum

 Round robin schedulers may perform poorly with respect to
job turnaround time
 The user could adjust the job’s # of tickets to improve the outcome

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

FEEDBACK - 2

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

OBJECTIVES – 4/29

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

OBJECTIVES – 4/29

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

OBJECTIVES – 4/29

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.3Slides by Wes J. Lloyd

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Friday April 30th at 11:59pm

 Grace period til Sunday May 2nd at 11:59 ** AM **

 Late submissions til Tuesday May 4th at 11:59pm

 Link:

 http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021_quiz_1.pdf

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

QUIZ 1

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Schedul ing Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

OBJECTIVES – 4/29

 Quiz posted on Canvas

 Due Wednesday May 5 @ 11:59p

 Provides CPU scheduling practice problems

 FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Unlimited attempts allowed

 Multiple choice and fill-in the blank

 Quiz automatically scored by Canvas

 Please report any grading problems

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

QUIZ 2 - CPU SCHEDULING ALGORITHMS

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

OBJECTIVES – 4/29

CHAPTER 27 -
LINUX

THREAD API

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.1
7

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released
 Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

CONDITIONS AND SIGNALS

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.4Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

CONDITION AND SIGNALS - 4

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.2
4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.5Slides by Wes J. Lloyd

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

OBJECTIVES – 4/29

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

LOCKS - 3

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

OBJECTIVES – 4/29

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

LOCKS - 4

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.6Slides by Wes J. Lloyd

 Is this code a good example of “f ine grained parallelism”?

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

April 9, 2020 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation

lies someplace along
the trade-off space…

Correctness
 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness
 Do all threads that compete for a lock have a fair chance

of acquiring it?

Overhead

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.34

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.35

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.36

HISTORICAL IMPLEMENTATION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.7Slides by Wes J. Lloyd

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.37

OBJECTIVES – 4/29

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L10.38

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.39

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.40

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

WE WILL RETURN AT
4:54PM

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.4
1

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.42

OBJECTIVES – 4/29

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.8Slides by Wes J. Lloyd

 Hardware support required for working locks
 Book presents pseudo code of C implementation
 TEST-and-SET adds a simple check to the basic spin lock
 Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1
 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.43

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting (< 1 time quantum)

 Performance is slow when multiple threads share a CPU

 Especially if “spinning” for long periods

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.45

SPIN LOCK EVALUATION

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.46

OBJECTIVES – 4/29

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment
 Return value at location

 Adds a comparison to TestAndSet
 Textbook presents C pseudo code
 Assumption is that the compare-and-swap method runs atomically

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”
 Upcoming in Chapter 32

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.48

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.9Slides by Wes J. Lloyd

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.4
9

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.50

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.51

LL/SC LOCK

 Two instruction lock

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

LL/SC LOCK - 2

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.5
3

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.54

OBJECTIVES – 4/29

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.10Slides by Wes J. Lloyd

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.55

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.56

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.57

CONCURRENT COUNTER

 Decrease counter

 Get value

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.59

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.60

PERFECT SCALING

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.11Slides by Wes J. Lloyd

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.61

OBJECTIVES – 4/29

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.62

SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX the synchronization
requirement for counting

 Instead of synchronizing global count variable each time:
counter=counter+1
 Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically
reduces locking API overhead by trading-off split-second
accuracy of the counter

 Sloppy counter: trade-off accuracy for speed
 It’s sloppy because it’s not so accurate (until the end)

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.63

SLOPPY COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.64

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.65

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.66

SLOPPY COUNTER - EXAMPLE

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.12Slides by Wes J. Lloyd

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.67

OBJECTIVES – 4/29

 Simplification - only basic list operations shown

 Structs and initialization:

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.68

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.69

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.70

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.71

CONCURRENT LINKED LIST

 Init and Insert

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.72

CCL – SECOND IMPLEMENTATION

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.13Slides by Wes J. Lloyd

 Lookup

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.73

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L10.74

CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.75

OBJECTIVES – 4/29

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.76

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.77

CONCURRENT QUEUE

 Add to queue

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.78

CONCURRENT QUEUE - 2

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.14Slides by Wes J. Lloyd

 Questions from 4/27
 C Tutorial - Pointers, Strings, Exec in C
 Assignment 1
 Quiz 1 – Active Reading Chapter 9
 Quiz 2 – CPU Scheduling Algorithms
 Chapter 27: Linux Thread API
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter
 Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.79

OBJECTIVES – 4/29

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.80

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.81

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.82

CONCURRENT HASH TABLE

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.8
3

 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:
 AtomicBoolean

 AtomicInteger

 AtomicIntegerArray

 AtomicIntegerFieldUpdater

 AtomicLong

 AtomicLongArray

 AtomicLongFieldUpdater

 AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html

April 29, 2021 TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.84

LOCK-FREE DATA STRUCTURES

TCSS 422 A – Spring 2021
School of Engineering and Technology

4/29/2021

L10.15Slides by Wes J. Lloyd

QUESTIONS

