TCSS 422 A — Spring 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Linux Thread API Il, Locks,
Lock-based data structures 'Q
[\

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2021]

Slleh School of Engineering and Technology, University of Washington

4/29/2021

OBJECTIVES - 4/29

L= Questions from 4/27 |
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]

SrRal222028 School of Engineering and Technology, University of Washington - Tacoma

‘ 1102 ‘

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
= TCS5422 A » Assignments

Spring 2021

Home
Announcements
- + Upcoming Assignments
Sylbhis | < TCSS 422 - Online Daily Feedback Survey - 4/1
: Avallable unti Apr 33t 11:3%m | Due Apr 3 3t10pm | /1 pts
Dicriiccinne o Y eimsas
awizs a0 | S e Ot e e 221 o T EX

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 ospts
Onascale of 1to 10, p ify your perspecti in today’s
class:

1 2 3 a4 s 6 7 8 9 10

Wosely Equal Hostly

Review To e New and Review Hew to He
Question 2 05pts

Please rate the pace of today’s class:

TCSS422: Computer Operating Systems [Spring 2021]

Al 2 A School of Engineering and Technology, University of Washington - Tacoma L104

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (57 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.56 ({ - previous 6.90)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.73 (1 - previous 5.52)

April 29, 2021 TCSSAZZ; Computer Operating Systems [Spring 2021]

School of Technology, v i Tacoma ‘ tos

FEEDBACK

= Does using mutex cause problems with running things In parallel?

= In C, locks are called pthread_mutex

= Using mutex (locks) in fact SOLVES problems running things in parallel

= Locks synchronize access to critical sections of code that MODIFY
shared variables

= If these sections ARE NOT SYNCHRONIZED this leads to RACE
CONDITIONS, and the intended changes to your variables may not be
SAVED

= These can lead to program errors and bugs are varying severity

= In particular these errors can be hidden and hard to see:
Realizing data is corrupted can often be hard

= | have to re-watch some of the lectures, some things were not
making any sense at all.

= Please do ask any questions if/when they arise..

TCS5422: Operating Systems [Spring 2021]

CIN, 27 Sehoollof Mechnolosy|University ofWashinatoniSTecoma

‘ L1106 ‘

Slides by Wes J. Lloyd

L10.1

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/29/2021

FEEDBACK - 2

From Previous
Class

= Would you review about Linux nice-value?
= Nice/renice commandis used to influence a job’s priority in Linux
= Nice predates the CFS scheduler
= Top shows nice values
=Nicevals w/ ps: ps ax -o pid,ni,cmd, $cpu, pri
= Nice values: -20 (HIGH priority) to 19 (LOW priority)
= Default value is 0
= Nice value influences the vruntime value of a job
=vruntimeis a weighted time measurement
= Linux process priority weights the calculation of vruntime
within a runqueue to impact the priority of a job (+ / -)
Influences job’s position in rb-tree
= Nice is used to launch a new job with a priority adjustment
= Renice is used to adjust priority of an existing job

TCS5422: Operating Systems [Spring 2021] o7
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2021

NICE / RENICE

= Find PID for VirtualBox

ps ax -o pid,ni,cmd,%cpu,pri | grep virtualbox

= Monitor process priority in top

top -d .1

= Adjust process priority using renice:
High priority

sudo renice -n -20 -p <pld>

Default priorlty

sudo renice -n 0 -p <pld>
Low priority

sudo renice -n 19 -p <pid>

TCS5422: Operating Systems [Spring 2021]

CIN, 2 e T T T o ey A T = TPy

L1108 ‘

FEEDBACK - 2

= How do lottery or stride schedulers optimize a job’s
response time and turnaround time?
= These schedulers are designed to distribute time to jobs based
on the number of tickets a job has
= The user is responsible for assigning tickets
= Resource sharing will mimic round-robin scheduling if all jobs
have the exact same number of tickets
= Stride scheduler will achieve round-robin like fairness more quickly
= Lottery scheduler requires more scheduling events & time
= The round robin scheduler is excellent at job response time
= Each job shares the resource for a fixed time quantum
= Round robin schedulers may perform poorly with respect to
job turnaround time
= The user could adjust the job’s # of tickets to improve the outcome

April 29, 2021 TCS5422: Operating Systems [Spring 2021] ‘ 1109 ‘

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/29

= Questions from 4/27
|= C Tutorlal - Polnters, Strings, Exec In C |
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]

SrRal222028 School of Engineering and Technology, University of Washington - Tacoma

110.10

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
| = Assignment 1 |
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Lot

April 29, 2021

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
| = Quiz 1 - Actlve Reading Chapter 9 |
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]

apal23 2028 School of Engineering and Technology, University of Washington - Tacoma

L0.12

Slides by Wes J. Lloyd

L10.2

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/29/2021

QuIZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas

= Due Friday April 30t at 11:59pm

= Grace period til Sunday May 2" at 11:59 ** AM **
= Late submissions til Tuesday May 4th at 11:59pm

= Link:
= http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021_quiz_1.pdf

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
| = Quiz 2 - CPU Scheduling Algorithms |
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 11013

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri inology, University i - Tacoma

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, University i - Tacoma

L10.14

April 29, 2021

QUIZ 2 - CPU SCHEDULING ALGORITHMS

= Quiz posted on Canvas

= Due Wednesday May 5 @ 11:59p

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Unlimited attempts allowed

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

TCSS422: Operating Systems [Spring 2021] 11015
100l of Engineeri i |

nology, ity ington - Tacoma

April 29, 2021

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
® Chapter 27: Linux Thread API
| = pthread_cond_walt/_slgnal/_broadcast |
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi - Tacoma L.16

April 29, 2021

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Spring 2021]

Senu2anad School of Engineering and Technology, University of Washington -

CONDITIONS AND SIGNALS

= Condition variables support “signaling” ¥ iy
between threads

int pthread_cond_wait (pthread cond_t *cond,
pthread mutex_t *mutex);
int pthread cond_signal (pthread_cond_t *cond);

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queues, lock is released
= Waits (lIstens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCS5422: Operating Systems [Spring 2021]

School of Technology, University of Washi Tacoma to1s

April 29, 2021

Slides by Wes J. Lloyd

L10.3

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/29/2021

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFQ “walt” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFQ “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_lock()

April 29, 2021 110.19

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri Technology, University i Tacoma

CONDITIONS AND SIGNALS -3

= Wait example:
pthread mutex t lock = PTHREAD MUTEX_INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)
pthread cond_wait(scond, &lock) ;

// Perform work that requires lock

a=a+b;

pthread_mutex_unlock (&lock) ;

I pthread mutex_lock (&lock) ;

= wait puts thread to sleep, releases lock

= when awoken, lock reacquired (but then released bv this code)
AR 0 State iabl t,
= When initialized, another thread signals Enab?ei\;z:'ear tr?r::d(s)

to proceed above.

pthread mutex_lock (slock) ;
initialized = 1;
pthread_cond_signal (sinit);
pthread_mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, Universi i Tacoma

110.20

April 29, 2021

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX_ INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex lock (&lock) ;
hile (initialized

pthread cond wait(&cond, &lock
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri i

Technology, ity i Tacoma Lot

April 29, 2021

TCS5422: Operating Systems [Spring 2021] 1022

school of Technology, i i Tacoma

April 29, 2021

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

Tean:
$(RM) -f $(binaries) *.o
= Example builds multiple single file programs
= All target
= pthread_mult
= Example if multiple source files should produce a single executable

= clean target

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri Technology, University i Tacoma

April 29, 2021 11023

CHAPTER 28 -

LOCKS

TCSS422: Operating Systems [Spring 2021]

Geui2an2021 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L10.4

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]
ety Fr e o T B s oy Tty A T = TRy

11025

= Lock variables are called “MUTEX”
=Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock

= States
=Locked (acquired or held)
= Unlocked (available or free)

= Only 1 thread can hold a lock

TCS5422: Operating Systems [Spring 2021]
RER2o 22N e oolol Enpinearns rdiTechnolor Il nve ity iNes hinetonETecome

11027

4/29/2021

—

= Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance

balance + 1;

= A “critical section”:

1 lock_t mutex; // some globally e
2
3 lock (&mutex) ;
4 balance = balance + 1;
5 unlock (&mutex) ;
April 29, 2021 TCS5422: Operating Systems [Spring 2021]

110.26

School of Engineering and Technology, University of Washington - Tacoma

"pthread mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma to28

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
U Introduction
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2021]
RERl2o 22N e oo[of Enginearing andiechnolosyilniversity/chiWeshington i Tacoma

11029

Slides by Wes J. Lloyd

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine gralned - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Spring 2021]
CIN, 27 I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

11030

L10.5

TCSS 422 A — Spring 2021
School of Engineering and Technology

FINE GRAINED?

= |s thls code a good example of “fine gralned parallelism”?

thread_mutex_Tlock (&lock);
= b++;
=a* c;
*d=a+ b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i+
}

e=¢e - 1i;

P
a
b

4/29/2021

FINE GRAINED PARALLELISM

pthread_mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2021]

April 29, 2021 School of Engineering and Technology, University of Washington - Tacoma

11031

pthread_mutex_lock (&lock_a);
pthread_mutex_Tlock(&lock_b) ;

a = b+
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock (&lock_b);
=a* c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock (&lock_d);
*d =a+ b +c;
pthread_mutex_unlock (&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_Tlock (&lock_e) ;

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma to32

LOCK GRANULARITY TRADE-OFF SPACE

EINE-GRAINED

Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

More overhead from
excessive locking
More parallelism

Higher code complexity
& debugging

Low overhead from
minimal locking

Less parallelism

Low code complexity
& simpler debugging

Every program
implementation
lies someplace along
the trade-off space...

April 3, 2020 Tcss4lzz; Operating Systems [Spring 2021]

school o Technology, ity i Tacoma

‘ 33 ‘

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness good lock?

=Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness
= Do all threads that compete for a lock have a fair chance

of acquiring it?

= Overhead

April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma to34

BUILDING LOCKS

= Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction

CMPXCHG
CMPXCHG8B
CMPXCHG16B
April 29, 2021 JEE RS SVS‘E"}:c[f‘f‘Z:‘f;““! . ngtonTacoma L1035

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts () ;

}

void unlock() {
EnableInterrupts () ;

B

¥

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma to3e

Slides by Wes J. Lloyd

L10.6

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
p Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

4/29/2021

April 29, 2021 TCS8422; Operating Systems [Spring 2021])
ool of Technology, y - Tacoma

11037

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks
= Is this lock implementation: (1)Correct? (2)Falr? (3)Performant?

typedef struct _lock t { int flag; } lock _ts

void lock(lock_t *mutex) {
9 (mutex->fla

7 spi
11 mutex->flag = 1;
225 1)

14 wvoid unlock(lock_t *mutex) {
15 mutex->flag = 07
16}

April 29, 2021 TCSSAIZZ; Operating Systems [Spring 2021] L1038

School of Technology, ity i Tacoma

DIY: CORRECT?

Threadl Thread2

= Correctness requires luck... (e.g. DIY lock is incorrect)

call lock ()
while (flag == 1)
interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)

= Here both threads have “acquired” the lock simultaneously

April 29, 2021 TCS8422; Operating Systems [Spring 2021])
0ol of Technology, y Tacoma

11039

DIY: PERFORMANT?

void Tock(lock_t *mutex)

// while lock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

April 29, 2021 TBSMZ; Operating Systems [Spring 2021]

”
School of Technology, Uni todo

ity of i Tacoma

WE WILL RETURN AT
4:54PM

. TCSS422: Operating Systems [Spring 2021]
Senu2anad School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks,Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2021]
CIN, 27 Sehosllof Ergineenng andTechnolosyjUniversity o Washinaton Sk Tecoma

110.42

Slides by Wes J. Lloyd

L10.7

TCSS 422 A — Spring 2021 4/29/2021

School of Engineering and Technology

DIY: TEST-AND-SET - 2

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks = C version: requires preemptive scheduler on single core system

= Book presents pseudo code of C implementation = Lock is never released without a context switch
TEST-and-SET adds a simple check to the basic spin lock = single-core VM: occasionally will deadlock, doesn’t miscount
= Assumption is this “C code” runs atomically on CPU: 1 itypedst BEract 166K £ {
1 int TestAndSet (int *ptr, int mew) (N
2z int old = *ptr; // 4 -
3 *ptr = new; 5 void
4 old; 3 o ava ble
- } 7
8
.)

= |ock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller d lock(lock_t *lock) (
(TestAndset (slock->flag, 1) == 1)

= Can implement the C version (non-atomic) and have some
success on a single-core VM T :;nclk(ic);;:cgtcflocm (

TCS5422: Operating Systems [Spring 2021]

SrRal222028 o T T T o e A S T = e to44

TCS5422: Operating Systems [Spring 2021]

Qeulza2023 AT o T B i oy ATt A T T Lio43

SPIN LOCK EVALUATION OBJECTIVES - 4/29

= Correctness: - g‘fl_es""_nls f':"_“ 4/27S e v in
] -
= Spin locks with atomic Test-and-Set: u.tor'a ointers, Strings, Exec in
Critical sections won’t be executed simultaneously by (2) threads = Assignment 1
® Quiz 1 - Active Reading Chapter 9

= Quiz 2 - CPU Scheduling Algorithms

= Fairness: :
= No fairness guarantee. Once a thread has a lock, nothing forces it to = Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast

relinquish it...
= Chapter 28: Locks

= Performance: = Int‘roductlon, Lock Granularit
= Spin Locks, Test and Set,

= Spin locks perform “busy waiting”
p. P Y g e . = Chapter 29: Lock Based Data Structures
= Spin locks are best for short periods of waiting (< 1 time quantum) Sty @amiesy
° (REGHEmERED (5 Slfow wien muliEib tineais eliee @ G = Concurrent Structures: Linked List, Queue, Hash Table

Especially if “spinning” for long periods

TCS5422: Operating Systems [Spring 2021]

SrRal222028 Sehoollof Erineering andTech nolosyiUnersity oWashinatonkTeconta L1048

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri chnology, University i Tacoma

110.45

April 29, 2021

COMPARE AND SWAP COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST, = Compare and Swap
before changing its value
> 1 int CompareAndSwap(int *ptr, int expected, int new) {
= If so, make assignment 2 int actual = *ptr;
= Return value at location : {actual, ==iezpected)
4 *ptr = new;
;! actual;

= Adds a comparison to TestAndSet
= Textbook presents C pseudo code 0 Soln e
= Assumption is that the compare-and-swap method runs atomically P

C implementation 1-core VM:
Count is correct, no deadlock

= Useful for wait-free synchronization 3 g g
= Supports implementation of shared data structures which can be ar B
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free” * cmpxchg8b
= Upcoming in Chapter 32 * cmpxchgl6b

= X86 provides “cmpxchgl” compare-and-exchange instruction

TCS5422: Operating Systems [Spring 2021]

apal23 2028 I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma to4g

L1047

TCS5422: Operating Systems [Spring 2021]
0ol of Engineeri Technology, University i Tacoma

April 29, 2021

Slides by Wes J. Lloyd L10.8

TCSS 422 A — Spring 2021
School of Engineering and Technology

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable

Condition variables

ATOMIC instructions

Fairness

None of the above

" When implementing locks in a high-level language *

4/29/2021

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
=Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

April 29, 2021 11050

TCS5422: Operating Systems [Spring 2021]
School of Engineeri Technology, Universi i Tacoma

LL/SC LOCK

int LoadLinked (int *ptr) {
*ptr;
1

%
2
3
4
5 int StoreConditional (int *ptr, int value) {
3
7
8

*ptr = value;
1; // success!

10 0; // failed to update

12}

(no one has updated *ptr since the LoadLinked to this address)

{

= LL instruction loads pointer value (ptr)

= Requires HW support
=C code is psuedo code

= SC only stores if the load link pointer has not changed

April 29, 2021 Tcsz:lz‘z); Operating Systems [Spring 2021]

nology, ity ington - Tacoma

11051

LL/SC LOCK - 2

void lock(lock_t *lock) {
m {
(LoadLinked (slock->flag) == 1)
7 // spin unt o
(storeconditional (

11 wvoid unlock(lock_t *lock) {
12 lock->flag = 0;
13}

= Two instruction lock

April 29, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, i i Tacoma tos2

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2021]

Senu2anad School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
|= Chapter 29: Lock Based Data Structures |
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

April 29, 2021 TBSMZ; Operating Systems [Spring 2021]

School of Technology, University of Washington - Tacoma Los4

Slides by Wes J. Lloyd

L10.9

TCSS 422 A — Spring 2021
School of Engineering and Technology

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

4/29/2021

TCS5422: Operating Systems [Spring 2021]

April 29, 2021 School of Engineering and Technology, University of Washington - Tacoma

11055

COUNTER STRUCTURE W/0O LOCK

= Synchronization weary --- not thread safe

1 _ counter_t {

2 alue;

3

4

5 void init (counter_t *c) {

6 c->value = 07

7 }

8

9 void increment (counter_t *c) {

10 c->value++;

11)

12

13 void decrement (counter_t *c) {

14 c->value--;

15)

16

17 int get(counter_t *c) {

18 return c->value;

19]

TCSS422: Operating Systems [Spring 2021]

CoIEyErs Schoolof Engineering and Telh‘:\ulfgy, Un]iversily of Washington - Tacoma Hose

CONCURRENT COUNTER

1 struct __counter_t {

2 int value;

3 pthread lock_t lock:

4 } counter_t;

5

6 void init (counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init (sc->lock,
9 ¥

10

Sl void increment(counter_t *c) {

12 Pthread mutex_lock (&c->lock) ;
13 c->value++;

14 pthread mutex_unlock (&c->lock) 7
15 } - -

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Spring 2021]

April 29, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1057

CONCURRENT COUNTER - 2

= Decrease counter

= Get value
(Cont.)
137 void decrement (counter_t *c) {
18 Pthread_mutex_lock(&c->lock) i
19 c->value--;
20 Pthread_mutex_unlock(&c->1ock) ;
21)
e
23 int get(counter_t *c) {
24 Pthread mutex lock(&c->lock) ;
25 int rc = c->value;
26 Pthread_mutex_unlock (sc->lock)
27 eturn rc;
28 }
TCSS422: Operating Systems [Spring 2021]
EIN, 7 Schoolof Engineering and Telh‘:\ulfgy, Un]iversily forWashmston® Tacoma L1038

CONCURRENT COUNTERS - PERFORMANCE

PERFECT SCALING

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X practs
5 S
B0
3
Es
v Traditional vs. sloppy counter
' * st s Sloppy Threshold (S) = 1024
reads

scales poorly

‘ April 29, 2021 ‘ TCSS422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

11059

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core

= N =100 tps

= 10 cores (x10)
= N = 1000 tps (x10)

TCS5422: Operating Systems [Spring 2021]

apal23 2028 School of Engineering and Technology, University of Washington - Tacoma

110,60

Slides by Wes J. Lloyd

L10.10

TCSS 422 A — Spring 2021
School of Engineering and Technology

4/29/2021

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
I = Sloppy Counter I

= Concurrent Structures: Linked List, Queue, Hash Table

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

L1061

April 29, 2021 ‘ TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2021]

CIN, 2 o T T T o e A S T = e

L1062

SLOPPY COUNTER - MAIN POINTS

= |dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Sloppy counter: trade-off accuracy for speed
= It's sloppy because it’s not so accurate (until the end)

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1063

April 29, 2021

Time ‘ Ly ‘ L, ‘ Ls Ly G
0 [¢] 0 [¢] 0 0
1 [¢] 0 1 1 0
2 1, 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 o
5 4 1 3 3 0
6 5>0 1 3 4 5 (from L,)
7 0 2 4 530 10 (from L)

April 29, 2021 TCS5422: Operating Systems [Spring 2021] Lo6s

School of Engineering and Technology, University of Washington - Tacoma

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

15

Time (seconds)

— T T T ——%
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma L1065

April 29, 2021

TCS5422: Operating Systems [Spring 2021]

apal23 2028 School of Engineering and Technology, University of Washington - Tacoma

110,66

Slides by Wes J. Lloyd

L10.11

TCSS 422 A — Spring 2021
School of Engineering and Technology

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Slo Counter
I = Concurrent Structures: Linked List hueue, Hash Table

TCS5422: Operating Systems [Spring 2021]
‘ Qeulza2023 ‘ e o T B s oy Tty A T = TRy Lo67

4/29/2021

CONCURRENT LINKED LIST -1

= Simplification - only basic list operations shown
= Structs and initialization:

1
2
3
4 struct _ node t *next;
5 } node_t;
6
7 7/ e uSEaEDe s
8 ty {
9]
10 pthread mutex_t lock;
11 } list_t;
12
13 void List_Tnit(list_t *L) {
14 L->head = NULL;
15 pthread mutex_init(sL->lock, NULL);:
16)
17
(Cont.)
April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

‘ 110,68 ‘

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18 int List_Insert(list_t *L, int key) {
19 pthread mutex_lock (sL->lock) ;
20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc”) ;
23 pthread_mutex_unlock (&L->lock) ;
24 return -1; fail }
26 new->key = key;
27 new->next = L->head;
28 L->head = new;
29 pthread mutex_unlock (sL->lock) ;
30 return 0; success
31
(Cont.)
April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ L1069 ‘

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
®= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 pthread mutex_lock(&L->lock) ;
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key)
37 pthread mutex_unlock (sL->lock) ;
38 return 07 success
39 }
40 curr = curr->next;
41
12 pthread mutex_unlock(&L->lock);
43 return -1; failure
44)
April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

‘ 110.70 ‘

CONCURRENT LINKED LIST

= First Implementation:
= Lock everythIng inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCS5422: Operating Systems [Spring 2021]
RERl2o 22N Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L7t

Slides by Wes J. Lloyd

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {
2 L->head = NULL;
3 pthread mutex_init (sL->lock, NULL);
4 ¥
5
6 void List Insert(list_t *I, int key) {
F synchron io ot n d
8 node_t *new = malloc(sizeof (node_t));
9 if (new == NULL) {
10 perror ("malloc") ;
11 return;
12 }
13 new->key = key:
14
15 just lock on
16 pthread mutex_lock (sL->lock) ;
17 new->next = L->head;
18 L->head = new;
19 pthread_mutex_unlock (&L->1ock) ;
20)
21

April 29, 2021 TCS$422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1072 ‘

L10.12

TCSS 422 A — Spring 2021
School of Engineering and Technology

= Lookup
(cont.)
22 int List_Lookup (list_t *L, int key) {
23 Tint rv = -17
24 pthread mutex_lock (sL->lock) ;
25 node_t *curr = L->head;
26 while (curr) {
27 if (curr->key =
28 v =0
29 break;
30 }
31 curr = curr->next;
32 }
33 pthread mutex_unlock (sL->1ock) ;
34 return rv; // now both success
35)
TC55422: Operating Systems [Spring 2021]
Qeulza2023 e e e Tec[hzolctggy, Ur\!versi(yOVWashinglun—Ta:oma ‘ L1073 ‘

4/29/2021

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2021]

e 2 s School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/29

= Questions from 4/27
= C Tutorial - Pointers, Strings, Exec in C
= Assignment 1
® Quiz 1 - Active Reading Chapter 9
= Quiz 2 - CPU Scheduling Algorithms
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List,Hash Table

TCS5422: Operating Systems [Spring 2021]
RER2o 22N e oolol Enpinearns rdiechnoloryil nve sty /chiNes hineronikTacoma

[o |

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ to7e ‘

CONCURRENT QUEUE

= Remove from queue

School of Engineering and Technology, University of Washington - Tacoma

1 ruct _ node_t {
2 int value;
3 struct _ node_t *next;
1 } node_t;
5
6 ty struct _ queue_t {
. node_t *head:
8 node_t *tail;
o pthread_mutex_t headLock;
10 pthread mutex_t tailLocks
11) queue_t;:
12
13 void Queue_Tnit (queue_t *q) {
14 node_t *tmp = malloc(sizeof (node_t));
15 mp->next = NULL;
16 g->head = g->tail = tmp;
17 pthread mutex_init (sg->headLock, NULL);
18 pthread_mutex_init (sq->taillock, NULL):
19)
20
(Cont.)

April 29, 2021 TCSS422: Operating Systems [Spring 2021] ‘ 077 ‘

CONCURRENT QUEUE - 2

= Add to queue

School of Engineering and Technology, University of Washington - Tacoma

(Cont.)
21 void Queue_Enqueue (queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock(sq->tailLock);
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock);
32)
(Cont.)
April 29, 2021 TCS5422: Operating Systems [Spring 2021] ‘ 078 ‘

Slides by Wes J. Lloyd

L10.13

TCSS 422 A — Spring 2021 4/29/2021
School of Engineering and Technology

OBJECTIVES - 4/29 CONCURRENT HASH TABLE

= Questions from 4/27 . N
= C Tutorial - Pointers, Strings, Exec in C = Consider a 5|mple hash table
= Assignment 1 =Fixed (static) size
® Quiz 1 - Active Reading Chapter 9 sHash maps to a bucket
: g:lazptzer-;;uusnﬂ;e::r“er;i A:grrlthms Bucket is implemented using a concurrent linked list
= pthread_cond_wait/_signal/_broadcast One lock per hash (bucket)
= Chapter 28: Locks Hash bucket is a linked lists
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue,/Hash Table

TCS5422: Operating Systems [Spring 2021]
ety Fr e o T B s oy Tty A T = TRy

L1078 April 29, 2021 TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma

110.80

INSERT PERFORMANCE

CONCURRENT HASH TABLE CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts s SECTSIRNCRELS (0D
= iMac with four-core Intel 2.7 GHz CPU 2 type e ahashi £l
4 list_t lists[BUCKETS];
15 5 } hash_t;
O Simple Concurrent List 6
X Concurrent Hash Table = void Hash Init(hash t *H) {
= 8 int i;
§1u 9 for (i = 0; i < BUCKETS; i++) {
S 10 List_Init (&H->1lists([i]);
3 11 }
= 12 }
Es 13
= 14 int Hash_Insert (hash_t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert (&H->lists[bucket], key):
0 17 }
1 * x * o i
0 10 20 30 40
Inserts (Thousands) 19 int Hash_Lookup (hash_t *H, int key) {
20 int bucket = key % BUCKETS;
scales 21 -eturn List_Lookup (sH->lists[bucket], key):
ently G)

ating Systems [Spring 2021}
CEIEBETR School of Engineering and Technology, University of Washington - Tacoma - ColEyEs

TCS5422: Operating Systems [Spring 2021]

School of Engineering and Technology, University of Washington - Tacoma Los2

| |
Which is a major advantage of using concurrent data
. LOCK-FREE DATA STRUCTURES
structures in your programs?

= Lock-free data structures in Java

Locks are encapsulated within data

structure code ensuring thread safety. = Java.util.concurrent.atomic package

= Classes:
Lock granularity tradeoff already N toicBoolcan
optimized inside data structurew By
5 " = AtomicintegerArra
Multiple threads can more easily B — g - IdyU -
share data omiclntegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater
= AtomicReference

All of the above

None of the above = See: https://docs.oracle.com/en/Java/]Javase/11/docs/apl/

TCS5422: Operating Systems [Spring 2021]
CIN, 27 I5ehool of Ergineering andTech noloayjUniersity o Washinaton S Tacoma

Slides by Wes J. Lloyd L10.14

TCSS 422 A — Spring 2021 4/29/2021
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L10.15

