
TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.1Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Linux Thread API, Locks,
Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.2

OBJECTIVES – 10/28

1

2

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

October 28, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

October 28, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.4

3

4

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.66 (- previous 6.23)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.58 (- previous 5.48)

October 28, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

MATERIAL / PACE

 . .

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

FEEDBACK

5

6

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.4Slides by Wes J. Lloyd

 Bonus session:

Recorded on Wednesday October 27 starting at 6:30pm

▪ Zoom link available on Canvas

▪ Problems and solutions posted on “Schedule” tab of website

 A series of example scheduling problems are solved:

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ

 Video recorded and now posted

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.7

BONUS SESSION –

EXAMPLE SCHEDULER PROBLEMS

 Questions from 10/26

 C Tutorial - Pointers, Str ings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.8

OBJECTIVES – 10/28

7

8

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.5Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.9

OBJECTIVES – 10/28

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.10

OBJECTIVES – 10/28

9

10

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.6Slides by Wes J. Lloyd

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Tuesday Nov 2nd at 11:59pm

 Grace period til Thursday Nov 4 th at 11:59 ** AM **

 Late submissions til Saturday Nov 6 th at 11:59pm

 Link:

 http://faculty.washington.edu/wlloyd/courses/tcss422/

TCSS422_s2021_quiz_1.pdf

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.11

QUIZ 1

 Quiz posted on Canvas

 Due Thursday Nov 4 @ 11:59p

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Unlimited attempts allowed

 Multiple choice and fill -in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.12

QUIZ 2 - CPU SCHEDULING ALGORITHMS

11

12

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2021_quiz_1.pdf

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.7Slides by Wes J. Lloyd

CHAPTER 27 -

LINUX

THREAD API

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.13

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.14

OBJECTIVES – 10/28

13

14

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.8Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.15

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.16

15

16

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.9Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

LOCKS - 3

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

OBJECTIVES – 10/28

17

18

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.10Slides by Wes J. Lloyd

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait ()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON -BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

19

20

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.11Slides by Wes J. Lloyd

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

CONDITION AND SIGNALS - 4

21

22

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.12Slides by Wes J. Lloyd

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

23

24

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.13Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.25

CHAPTER 28 –

LOCKS

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.26

25

26

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.14Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

OBJECTIVES – 10/28

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

LOCKS

27

28

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.15Slides by Wes J. Lloyd

 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.29

LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner

releases it.

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

LOCKS - 3

29

30

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.16Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.31

OBJECTIVES – 10/28

 Program can have many mutex (lock) variables to

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table,

row, field

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

LOCKS - 4

31

32

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.17Slides by Wes J. Lloyd

 Is this code a good example of “fine grained parallelism”?

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.34

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

33

34

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.18Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?

▪ Are critical sections mutually exclusive?

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance

of acquiring it?

Overhead

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

35

36

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.19Slides by Wes J. Lloyd

 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock

implementation

▪ Atomic-as a unit exchange instruction

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

HISTORICAL IMPLEMENTATION

37

38

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.20Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.39

OBJECTIVES – 10/28

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do- it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

39

40

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.21Slides by Wes J. Lloyd

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.41

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ Generates heat…

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.42

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

41

42

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.22Slides by Wes J. Lloyd

WE WILL RETURN AT

2:57PM

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.43

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

OBJECTIVES – 10/28

43

44

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.23Slides by Wes J. Lloyd

 Hardware support required for working locks

 Book presents pseudo code of C implementation

▪ TEST-and-SET adds a simple check to the basic spin lock

▪ Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

DIY: TEST-AND-SET - 2

45

46

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.24Slides by Wes J. Lloyd

 Correctness:

▪ Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

SPIN LOCK EVALUATION

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

OBJECTIVES – 10/28

47

48

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.25Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST,
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically

 Useful for wait-free synchronization

▪ Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

▪ Shared data structure updates become “wait -free”

▪ Upcoming in Chapter 32

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare -and-exchange instruction

▪ cmpxchg8b

▪ cmpxchg16b

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

49

50

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.26Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.51

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

51

52

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.27Slides by Wes J. Lloyd

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

LL/SC LOCK

 Two instruction lock

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

LL/SC LOCK - 2

53

54

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.28Slides by Wes J. Lloyd

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.55

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

OBJECTIVES – 10/28

55

56

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.29Slides by Wes J. Lloyd

Adding locks to data structures make them

thread safe.

Considerations:

▪Correctness

▪Performance

▪Lock granularity

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

LOCK-BASED

CONCURRENT DATA STRUCTURES

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

COUNTER STRUCTURE W/O LOCK

 Synchronization weary --- not thread safe

57

58

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.30Slides by Wes J. Lloyd

 Add lock to the counter

 Require lock to change data

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

CONCURRENT COUNTER

 Decrease counter

 Get value

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

CONCURRENT COUNTER - 2

59

60

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.31Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

PERFECT SCALING

61

62

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.32Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

OBJECTIVES – 10/28

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Sloppiness threshold (S):

Update threshold of global counter with local values

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

SLOPPY COUNTER

63

64

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.33Slides by Wes J. Lloyd

 Idea of Sloppy Counter is to RELAX the synchronization

requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second

accuracy of the counter

 Sloppy counter: trade-off accuracy for speed

▪ It’s sloppy because it’s not so accurate (until the end)

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

SLOPPY COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

SLOPPY COUNTER - 2

65

66

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.34Slides by Wes J. Lloyd

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

SLOPPY COUNTER - EXAMPLE

67

68

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.35Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

OBJECTIVES – 10/28

 Simplification - only basic list operations shown

 Structs and initialization:

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

CONCURRENT LINKED LIST - 1

69

70

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.36Slides by Wes J. Lloyd

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

CONCURRENT LINKED LIST - 3

71

72

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.37Slides by Wes J. Lloyd

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control f low” to be error

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

CONCURRENT LINKED LIST

 Init and Insert

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.74

CCL – SECOND IMPLEMENTATION

73

74

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.38Slides by Wes J. Lloyd

 Lookup

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

CONCURRENT LINKED LIST PERFORMANCE

75

76

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.39Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

OBJECTIVES – 10/28

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.78

MICHAEL AND SCOTT CONCURRENT QUEUES

77

78

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.40Slides by Wes J. Lloyd

 Remove from queue

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

CONCURRENT QUEUE

 Add to queue

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

CONCURRENT QUEUE - 2

79

80

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.41Slides by Wes J. Lloyd

 Questions from 10/26

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Assignment 1 - Due Fri Nov 12

 Quiz 1 (Due Tue Nov 2) – Quiz 2 (Due Thur Nov 4)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

OBJECTIVES – 10/28

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

CONCURRENT HASH TABLE

81

82

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.42Slides by Wes J. Lloyd

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

CONCURRENT HASH TABLE

83

84

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.43Slides by Wes J. Lloyd

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L9.85

 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/uti l/concurrent/atomic/package -summary.html

October 28, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.86

LOCK-FREE DATA STRUCTURES

85

86

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/28/2021

L9.44Slides by Wes J. Lloyd

QUESTIONS

87

