TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Linux Thread API, Locks,

Lock-based data structures
[

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021

e e School of Engineering and Technology, University of Washington

10/28/2021

OBJECTIVES - 10/28

[= Questions from 10/26]
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Fall 2021)

‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

192

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

2021

Home
Announcements
Zoom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
" Available until Apr 5 at 11:5%pm | DueApr5 at 10pm | -/1pts
Nizerccinne An.r e
TCSS422: Computer Operating Systems [Fall 2021]
‘ October2s,2021 School of Engineering and Technology, University of Washington - Tacoma 103

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCS$422: Computer Operating Systems [Fall 2021]

(S AT School of Engineering and Technology, University of Washington - Tacoma

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (25 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.66 (T - previous 6.23)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.58 (T - previous 5.48)

TCS5422: Computer Operating Systems [Fall 2021]

‘ i 2 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

FEEDBACK

TCS5422: Operating Systems [Fall 2021]

‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma

L9.1

TCSS 422 A - Fall 2021
School of Engineering and Technology

10/28/2021

BONUS SESSION -
EXAMPLE SCHEDULER PROBLEMS

= Bonus session:
Recorded on Wednesday October 27 starting at 6:30pm
= Zoom link available on Canvas
= Problems and solutions posted on “Schedule” tab of website

= A series of example scheduling problems are solved:
= Focus on: FIFO, SJF, STCF, RR, MLFQ

= Video recorded and now posted

TC55422; Operating Systems [Fall 2021]
Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma. 107

OBJECTIVES - 10/28

® Questions from 10/26
| = C Tutorlal - Pointers, strlng, Exec In C - Due Frl Oct 29 |
= Assignment 1 - Due Fri Nov 12
®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021] o8
School of Engineering and Technology, University of Washington - Tacoma

‘ October 28, 2021

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
October28, 2021 School of Engineering and Technology, University of Washington - Tacoma. 199

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Assignment 1 - Due Fri Nov 12
| Quiz 1 iDue Tue Nov 2) - Quiz 2 (Due Thur Nov 42 |
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021] L8.10
School of Engineering and Technology, University of Washington - Tacoma

‘ October 28, 2021

10

(0] V] A §

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas

= Due Tuesday Nov 2" at 11:59pm

= Grace period til Thursday Nov 4th at 11:59 ** AM **
= Late submissions til Saturday Nov 6" at 11:59pm

= Link:

= http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021_qulz_1.pdf

TCSS422: Operating Systems [Fall 2021]
G School of Engineering and Technology, University of Washington - Tacoma Lo

QUIZ 2 - CPU SCHEDULING ALGORITHMS

= Quiz posted on Canvas

= Due Thursday Nov 4 @ 11:59p

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Unlimited attempts allowed

= Multiple choice and fill-in the blank

® Quiz automatically scored by Canvas
= Please report any grading problems

7CS5422: Operating Systems [Fall 2021]
‘ EEEIL School of Engineering and Technology, University of Washington - Tacoma 1012

11

Slides by Wes J. Lloyd

12

L9.2

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2021_quiz_1.pdf

TCSS 422 A - Fall 2021
School of Engineering and Technology

10/28/2021

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Fall 2021]

(e i £ A School of Engineering and Technology, University of Washington -

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
thread_create/_join
thread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 28, 2021

13

14

u € When poll is active, respond at pollev.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

Which NON-BLOCKING API call can be used to
YW obtain a lock without BLOCKING the calling
thread?

pthread_mutex_lock()
pthread_mutex_unlock()
pthread_join()
pthread_mutex_trylock()
None of the above

Gethel L}

u @ When poll is active, respond at pollev.com/wesleylloyd641 |}
& Text WESLEYLLOYD641 to 22333 once to join

Which API call BLOCKS temporarily for a
YW specified amount of time while trying to obtain

a lock before giving up?

- P For \ e srsen et e n

15

16

LOCKS - 3

= Error checking wrapper

i Pthread mutex lock(pthread mutex t *mutex) {
t rc - pthread_mutex_lock (mutex) ;
assert(rc == 0);

+

= What if lock can’t be obtained?

t pthread mutex_trylock(pthread mutex t *mutex);
pthread mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout)s

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

‘ G TCS5422: Operating Systems [Fall 2021] o7

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
hread_mutex_lock/_unlock/_trylock/_timelock
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422: Operating Systems [Fall 2021]
‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma 1018

17

Slides by Wes J. Lloyd

18

L9.3

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

nt pthread_cond wait (pthread cond t *cond,
pthread mutex_t *mutex);
pthread cond signal (pthread cond t *cond); :

pthread_cont_t datatype

pthread_cond_wait()

= Puts thread to “sleep” (waits) (THREAD is BLOCKED)

= Threads added to >FIFO queue<, lock is released

= Waits (llstens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TC55422; Operating Systems [Fall 2021]
‘ Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma Lo-19

19

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD_COND_INITIALIZER;

while (initialized
pthread_cond_wait (&cond, &lock) ;

// Perform work that requires lock

a=a+b;

pthread mutex_unlock (&lock) ;

pthread mutex_lock (&lock) ;
‘ 0)

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released b_/ this code)
= When initialized, another thread signals State variable set,

Enables other thread(s)
ack(slagk) ; to proceed above.

<€
gnal(einit);
_unlock (&lock) 7

TC55422; Operating Systems [Fall 2021]
‘ October28, 2021 School of Engineering and Technology, University of Washington - Tacoma 21

pthread mutex

pthread_mut

21

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCSS422: Operating Systems [Fall 2021]
‘ G School of Engineering and Technology, University of Washington - Tacoma 1923

23

Slides by Wes J. Lloyd

CONDITIONS AND SIGNALS -2

int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal()
= Called to send a “signal” to wake-up first thread in FIFO “walt” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

®= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TC55422; Operating Systems [Fall 2021]
‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma 1920

20

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

t ‘i
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TC55422: Operating Systems [Fall 2021]
‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma 1022

22

SAMPLE MAKEFILE

Cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

Tean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs
= All target

= pthread_mult

= Example if multiple source files should produce a single executable
= clean target

7CS5422: Operating Systems [Fall 2021]
‘ EEEIL School of Engineering and Technology, University of Washington -Tacoma 1024

24

10/28/2021

L9.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

10/28/2021

€ When poll is active, respond at pollev.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

What key feature differentiates condition

variables from mutex_locksinC?

Conditian variables provide only NON-BLOCKING
APl cals.

Locks can not be used without condition
variales

Condition variables introduce a FIFQ queue
enabling control of the arder that theeass wil
recenve the lack which provides faimess.

Condition variables must first be initialized toa
nan-HULL value before being used in the program.

Mone of the above

- P For \ e srsen et e

CHAPTER 28 -

LOCKS

TCSS422: Operating Systems [Fall 2021)

Octoberas 2021 School of Engineering and Technology, University of Washington -

25

26

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

DRI oGy

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021]

‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

19.27

|
= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance — balance + 1;

= A “critical section”:

lock t mutex;

balance = balance + 1;

1

2 -

3 lock (smutex) ;

3

5 unlock (smutex) ;

TCSS422: Operating Systems [Fall 2021]

‘ (Octoner2s, 2021 School of Engineering and Technology, University of Washington - Tacoma

27

LOCKS - 2

= Lock variables are called “MUTEX”

= Lock variables store the state of the lock
= States
=Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

= Short for mutual exclusion (that’s what they guarantee)

TCS5422: Operating Systems [Fall 2021]

‘ G School of Engineering and Technology, University of Washington - Tacoma

19.29

28

" pthread mutex_ lock (&lock)

= Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

TC55422: Operating Systems [Fall 2021]
‘ OEEETERATR School of Engineering and Technology, University of Washington -Tacoma 130

29

Slides by Wes J. Lloyd

30

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction,
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021] l931
School of Engineering and Technology, University of Washington - Tacoma.

‘ October 28, 2021

31

FINE GRAINED?

= [s this code a good example of “fIne gralned parallellsm”

thread_mutex_lock(&lock);

b++;

a* ¢

*d =a+ b +c;

FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;

Int i=0

while (node) {

node->title = strl;
node->subheading = str2;
node->desc = str3;

node->end = *e;

node = node->next;

p
a
b

f.
} .
e=e-1;
pthread_mutex_unlock(&lock);
TCS5422: Operating Systems [Fall 2021]
‘ October28, 2021 School of Engineering and Technology, University of Washington - Tacoma 1933

33

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED

Many Lock (kernel) calls

COARSE-GRAINED

Few Lock (kernel) calls

More overhead from
excessive locking

More parallelism

Higher code complexity
& debugging

Low overhead from
minimal locking

Less parallelism

Low code complexity
& simpler debugging

Every program
implementation
lies someplace along
the trade-off space...

TCSS422: Operating Systems [Fall 2021]
‘ G School of Engineering and Technology, University of Washington -Tacoma 143

10/28/2021

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine gralned - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Fall 2021)

‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

32

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock (&lock_b);

a = b++;

pthread_mutex_unlock (&lock_b);
pthread_mutex_unlock (&lock_a);

pthread_mutex_lock (&lock_b);

= [H
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock (&lock_d);

*d =a+ b +c;

pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock (&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock (&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS422: Operating Systems [Fall 2021]

‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

34

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness good lock?

G
= Does the lock work? T

Y
= Are critical sections mutually exclusive? = 7
(atomic-as a unit?)

= Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

= Overhead

7CS5422: Operating Systems [Fall 2021]
‘ EEEIL School of Engineering and Technology, University of Washington -Tacoma 1936

35

Slides by Wes J. Lloyd

36

L9.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

BUILDING LOCKS

= Locks require hardware support
= To minimize overhead, ensure fairness and correctne

implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHG8B
CMPXCHG16B

SS

= Special “atomic-as a unit” instructions to support lock

TCS5422: Operating Systems [Fall 2021]

‘ Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma

19.37

37

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introdu n, Lock Granularity
Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
‘ October28, 2021 School of Engineering and Technology, University of Washington - Tacoma.

19.39

39

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1;

= Here both threads have “acquired” the lock simultaneously

TCS3422: Operating Systems [Fall 2021]

‘ G School of Engineering and Technology, University of Washington - Tacoma

Le.41

41

Slides by Wes J. Lloyd

10/28/2021

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

lock() |
DisableInterrupts(}s

unlock () {
EnableInterrupts();

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

TCSS422: Operating Systems [Fall 2021)

‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma 1938

38

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks

= |s this lock implementation: (1)Correct? (2)Fair? (3)Performant?

1 " _lock t { int flag: } lock t;
2

3

1

5

[

B look(*mutex) |

] (mutex->flag == 1) TEST
10 v t
11 mitex->rlag = 17

12

13

14 unlock(lock t *mutex) {

15 motex->flag = 07

16 |}

TCSS422: Operating Systems [Fall 2021]

‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

L9.40

40

DIY: PERFORMANT?

void Tock(Tock_t *mutex)
{

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCS5422: Operating Systems [Fall 2021]

‘ EEEIL School of Engineering and Technology, University of Washington -Tacoma

Le.42

42

L9.7

TCSS 422 A - Fall 2021 10/28/2021
School of Engineering and Technology

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin LocksCompare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

WE WILL RETURN AT

2:57PM

TCSS422: Operating Systems [Fall 2021]

(e i £ A School of Engineering and Technology, University of Washington -

43 44

TEST-AND-SET INSTRUCTION DIY: TEST-AND-SET - 2

= Hardware support required for working locks

= Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

= C version: requires preemptive scheduler on single core system
® Lock is never released without a context switch
= single-core VM: occasionally will deadlock, doesn’t miscount

1 typedet T _lock t (
1 TestAndset (int *ptr, int mew) { ER e
2 old = *ptr 1 -
3 *ptr = new; 5 initilock_t *lock) [
4 old: A i £ .
5 1 7
] lock->flag =
= |lock() method checks that TestAndSet doesn’t return 1 7(1
= Comparison is in the caller 11 Lock(lock_t *lock) [
12 (TestandSet (ilock->flag, 1) == 1)
13 z
N N .)
= Can implement the C version (non-atomic) and have some 15
success on a single-core VM 16 woid unlock{lock t *lock) (
17 lock->flag = Or
18)
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ October2s,2021 School of Engineering and Technology, University of Washington - Tacoma 1945 ‘ (Octoner2s, 2021 School of Engineering and Technology, University of Washington - Tacoma Lo46

45 46

SPIN LOCK EVALUATION OBJECTIVES - 10/28

| (OO = Questions from 10/26
" = C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Spin locks with atomic Test-and-Set: = Assignment 1 - Due Fri Nov 12
Critical sections won’t be executed simultaneously by (2) threads Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)

Chapter 26: Concurrency: An Introduction
= Falrness: * Race condition

= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance: = pthread_cond_wait/_signal/_broadcast

o G (el § “h iting” = Chapter 28: Locks

pin locks perform “busy waiting = Introduction, Lock Granularit:
= Spin locks are best for short periods of waiting (< 1 time quantum) = Spin Locks, Test and Set,/Compare and Swap
= Performance is slow when multiple threads share a CPU = Chapter 29: Lock Based Data Structures
Especially if “spinning” for long periods = Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
TCSS422: Operating Syste [Fall 2021] TCSS422: O ting Syste [Fall 2021]

‘ G Schoolof Engineering anl Techacogy, Univerity of Washington -Tocoma L4 ‘ OEEETERATR School of Engneeing and Technology, Universty of Washigton - Tacoma Lo

47 48

Slides by Wes J. Lloyd L9.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”
= Upcoming in Chapter 32

TCS5422: Operating Systems [Fall 2021] L9498
School of Engineering and Technology, University of Washington - Tacoma

‘ October 28, 2021

49

[| |
"When implementing locks in a high-level language "

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable

Condition variables

ATOMIC instructions

Fairness

None of the above

e comtent hel |
™ o comten, .

]
1 LoadLinked(int *ptr) (
2 *ptr
3 I
4
5 nt value) {
[ce the LoadLinked to this address) {
7
5 1 {
10
11)
1z}
= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support
= C code is psuedo code
TCSS422: Oy ing Sy [Fall 2021]

10/28/2021

COMPARE AND SWAP

= Compare and Swap

Comp dswap (

“ptr, int expected, in

actual;

PSR C implementation 1-core VM:
Count is correct, no deadlock

4 }

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

TCSS422: Operating Systems [Fall 2021)

‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

50

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Fall 2021]

‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

52

LL/SC LOCK - 2

1 lock(lock_t *lock) |

2 (SN

3 (LoadLinked(slock->flag) == 1}
4 :

5 {StoreConditional (slock-»>flag, 1) == 1)
7

E 1

!

10

1 unlock (lock_t *lock) {

12 lock->flag = 0:

13}

= Two instruction lock

‘ October 28, 2021

53

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Fall 2021] 1954
School of Engineering and Technology, University of Washington - Tacoma

54

L9.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Fall 2021]

(e i £ A School of Engineering and Technology, University of Washington -

55

LOCK-BASED

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

CONCURRENT DATA STRUCTURES

TCS5422: Operating Systems [Fall 2021]

‘ October2s,2021 School of Engineering and Technology, University of Washington - Tacoma

L9.57

57

CONCURRENT COUNTER

1 ruct _counter_t |

2z int value;

3 pthread lock t lock:

4 | counter_t;

€ id init(counter t *c) |

7 c->value = 07

E pthread_mutex_init(sc->lock, NULL);
k4)

10

1 1 increment (counter t *c) {

12 read_mutex_lock (&c->10ck) ¢
13 +

14

15)

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Fall 2021]

‘ G School of Engineering and Technology, University of Washington - Tacoma

1959

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

* Introduction, Lock Granularity

Locks, Test and Set, Compare and Swap
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Fall 2021)

‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

56

= Synchronization weary --- not thread safe
1 r _ counter t |
2 t valuej
3) counter_t;
4
5 init (counter_t *c) {
6 c->value = 0;
7 i
a
3 increment (counter t *c) |
10 c->value++;
11 1]
12
13 decrement (counter t *c) {
11 c->value--;
15)
16
17 get (counter,
18 1
19]
TCSS422: Operating Systems [Fall 2021]
‘ (Octoner2s, 2021 School of Erp:ineerigngv;:i Tec[hnology,]Umvers\’ty of Washington - Tacoma L8

58

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(cont.)
17 1 decrement (counter_t *c)
18 Pthread_mutex_lock(sc->lock):
19 c->value--;
20 Pthread mutex unlock (se->lock) s
21)
22
23 get (count:)t
24 pthread mutex lock(sc->lock);
25 rc = c->value;
26 | mutex_unlock(sc->lock) s
27 :
28)

‘ October28, 2021 TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

59

Slides by Wes J. Lloyd

19.60

60

10/28/2021

L9.10

TCSS 422 A - Fall 2021 10/28/2021
School of Engineering and Technology

CONCURRENT COUNTERS - PERFORMANCE PERFECT SCALING

= jMac: four core Intel 2.7 GHz i5 CPU = Achieve (N) performance gain with (N) additional resources
= Each thread increments counter 1,000,000 times
= Throughput:

= Transactions per second (tps)

g
gi = 1 core
E =N =100 tps
Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024 = 10 cores (x10)
=N =1000 tps (x10)

scales poorly

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma Lo:61 October28 2028 School of Engineering and Technology, University of Washington - Tacoma L9.62

‘ October 28, 2021

61 62

OBJECTIVES - 10/28 SLOPPY COUNTER

= Questions from 10/26

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29 " Provides Single Iogical shared counter
= Assignment 1 - Due Fri Nov 12 = Implemented using local counters for each ~CPU core
: Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) 4 CPU cores = 4 local counters & 1 global counter

Chapter 26: Concurrency: An Introduction
= Race condition Local counters are synchronized via local locks
* Critical section = Global counter is updated periodically

= Chapter 27: Linux Thread API
= pthread_create/_join Global counter has lock to protect global counter value

= pthread_mutex_lock/_unlock/_trylock/_timelock Sloppiness threshold (S):
= pthread_cond_wait/_signal/_broadcast Update threshold of global counter with local values
= Chapter 28: Locks Small (S): more updates, more overhead

= Introduction, Lock Granularity

Large (S): fewer updates, more performant, less synchronized
= Spin Locks, Test and Set, Compare and Swap ge (S) P p i

Chapter 29: Lock Based Data Structures = Why this implementation?
= Sloppy Counter Why do we want counters local to each CPU Core?
= Concurrent Structures: Linked List, Queue, Hash Table

‘ October 28, 2021

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma. 1963 October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma Lo.64

63 64

SLOPPY COUNTER - MAIN POINTS SLOPPY COUNTER - 2
= |dea of Sloppy Counter is to RELAX the synchronization = Update threshold (S) = 5
requirement for counting = Synchronized across four CPU cores
= Instead of synchronizing global count variable each time: = Threads update local CPU counters
counter=counter+1
mime | 1, | oL | | o G
= Synchronization occurs only every so often: 0 o 0 [0 0
e.g. every 1000 counts 1 0 0 1 1 0
. o . . 2 1 0 2 1 0
= Relaxing the synchronization requirement drastically 3 5 o 2 1 0
reduces locking APl overhead by trading-off split-second a 3 o 3 2 0
accuracy of the counter 5 4 1 3 3 0
6 520 1 3 4 5 (from L,)
= Sloppy counter: trade-off accuracy for speed 7 0 2 N 530 10 (from L)
= It’s sloppy because it’s not so accurate (until the end)
[oomeamaon [IERommmeeman (o ien e s [omobmaon [0 o 200 sigton s s

65 66

Slides by Wes J. Lloyd L9.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

THRESHOLD VALUE S

= Low S > What is the consequence?
= High S - What is the consequence?
15

m
1(310
5
g
8
IR
13
Es L
s
e
0+ T T T ¥ ¥ ¥ *
12 4 8 16 32 64 128256 5121024
Sloppiness

= Consider 4 threads increment a counter 1000000 times each

TCS5422: Operating Systems [Fall 2021]

‘ Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma

L9.67

67

OBJECTIVES - 10/28

= Questions from 10/26
C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
October28, 2021 School of Engineering and Technology, University of Washington - Tacoma.

69

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18
19
20
21

ae

ont.)

TCS3422: Operating Systems [Fall 2021]

‘ G School of Engineering and Technology, University of Washington - Tacoma

871

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCSS422: Operating Systems [Fall 2021)

October28 2028 School of Engineering and Technology, University of Washington - Tacoma

68

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

2 __node_t |
3 ke
4 struct _ node_t *next:

TCSS422: Operating Systems [Fall 2021]

October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

70

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32

{curr->key == key) {
pthread_mutex_unlock {sL->10ck) ;

r = curr-»next:

unlock (&L->lock) 7

1
pthread muf
EN

TCS5422: Operating Systems [Fall 2021]

EEEIL School of Engineering and Technology, University of Washington -Tacoma

872

71

Slides by Wes J. Lloyd

72

TCSS 422 A — Fall 2021

10/28/2021
School of Engineering and Technology

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exceptlon-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TC55422; Operating Systems [Fall 2021]
‘ Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma 1973

73

CCL - SECOND IMPLEMENTATION - 2

= Lookup
o)
22
24
25
26 (curr) |
27 (eurr->key == key) |
2 =
30]
E3 curr = curr->next;
3z 1]
33 pthread_mutex_unlock (éL->lock) 7
2 - .
35 1

TC55422; Operating Systems [Fall 2021]
‘ October28, 2021 School of Engineering and Technology, University of Washington - Tacoma Lo.75

75

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Hash Table

TCSS422: Operating Systems [Fall 2021]
‘ G School of Engineering and Technology, University of Washington - Tacoma 1077

CCL - SECOND IMPLEMENTATION

= Init and Insert

1 List_Init(list_t *L) {
2 :
3 _init(iL->lock, NULL):
4 1
6 List Insert{list t *L, int key)
1
8 cof (nods_t))
i']
1
12)
13 new->key = keyr
14
15
16 pthread m lock (&L->1ock) ;
17
16
19 >lack)t
20 !
21
‘ October 28, 2021 TC55422; Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

74

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant
= Users must “wait” in line for a single lock to access/modify
any item
= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list
= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...
= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Fall 2021]

October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma 1976

76

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall

= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

7CS5422: Operating Systems [Fall 2021]
EEEIL School of Engineering and Technology, University of Washington -Tacoma 1078

77 78

Slides by Wes J. Lloyd L9.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

L !
2 valn
3 E __noge_t *next:
4) node T
5
&
7
]
s
1
12
i3
14 (node_t))s
15
%_init (sq->he
tex_init (&g->ta
1
N

TC55422; Operating Systems [Fall 2021]
‘ Octobeszsi202.8 School of Engineering and Technology, University of Washington - Tacoma

19.79

79

OBJECTIVES - 10/28

= Questions from 10/26
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,

TC55422; Operating Systems [Fall 2021]
‘ October28, 2021 School of Engineering and Technology, University of Washington - Tacoma.

L9.81

81

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

© Simpie Concurient List
X Cancurrent Hash Table

Time (seconds)
ES

\\

-

0 10 20 30 40
Inserts (Thousands)

scales

TCS3422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

83

Slides by Wes J. Lloyd

10/28/2021

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

22
24
25
26

Queue_E e (quene_t *q, value) {
tmp = malloc((node_t))
azsert(tmp I= '

tmp->value = val
THp->next =

pthr 2 (sq->taillock) s
i

_mutex_unlock(&g->taillock) ;

(Cont.)

TC55422; Operating Systems [Fall 2021]
‘ October28 2028 School of Engineering and Technology, University of Washington - Tacoma

80

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Fall 2021]

‘ October 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

82

1 BUCKETS (101)
3 _hash t {
1 t Tists [BUCKETS] 7
7 Hash_Init(hash_t *H) |
8 Int iz -
3 for (4 = 07 i < BUCKETS; i++) {
10 List_Init (sH->lists[i)):
11
12)
13
1 t Hash_Insert (has
15 t buck
16 Tist]
17)
18
19 Hash_Lookup (hash_t *H, key) {
20 Tint bucket = key % BUCKE
2 List_Look ->lists(bucket], key):
22)
TCSS422: Operating Systems [Fall 2021]
‘ EEEIL o T E et 1084

84

TCSS 422 A - Fall 2021
School of Engineering and Technology

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

“Whichis a major advantage of using concurrent datd
structures in your programs?

10/28/2021

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

® Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomiclintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html
October 28, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

85

QUESTIONS

87

Slides by Wes J. Lloyd

86

L9.15

