TCSS 422 A - Fall 2021 10/26/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 10/26

[= Questions from 10721]
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
Wes J. LIOyd - zthread:cund_;vait/i;ignaI/_/b-roaydcas/t-
School of Engineering and Technology = Chapter 28: Locks
f . . = Introduction, Lock Granularity
Unlver5|ty of Washmgton - Tacoma = Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating ms [Fall 2021] TCSS422: Operating Systems [Fall 2021]
i i Iy . 82
Cecbanze iz School of Engineering and Technology, University of Washingtor October 26, 2021 School of Engineering and Technology, Universty of Washington - Tacoma

Lock-based data structures &

TCSS 422 - Online Daily Feedback Survey - 4/1

ONLINE DAILY FEEDBACK SURVEY Quiz Instructians

Question 1 05 pts
. . . On.a scale of 1 to 10, please classify your perspective on materlal covered n today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 &4 5 & 7 8 9 10
= Tuesday surveys: due by ~ Wed @ 11:59p e - il
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments
Spong 2021
o “ Question 2 05pe
Home
Announcements Please rate the pace of today's class:
Zoom + Upcoming Assignments 12 3 4 s & 7 8 3 1
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:5%pm | DueApr5 at 10pm | -/1pts
Nicrucsinne Aun.r o
TCSS422: Computer Operating Systems [Fall 2021]
‘ s 2 School of Engineering and Technology, University of Washington - Tacoma 83 Octobey262021 e ooz L84

MATERIAL / PACE FEEDBACK

= Please classify your perspective on material covered in today’s = Why does the final (value of the) counter fluctuate so much?
class (29 respondents): = When two threads count up and each increments the same variable,
= 1-mostly review, 5-equal new/review, 10-mostly new if the count is low (e.g. < 5000) then each thread is so FAST that it
g (L-p) f | he full f context switch
= Average - 6.23 (4 - previous 6.48 often completes the full count before a

= For larger counts, the threads will have to context swltch due to the
0S timer Interrupt that restricts jobs from running longer than their
= Please rate the pace of today’s class: allowed tlme slice
= 1-slow, 5-just right, 10-fast = A race condltlon occurs when two threads race to update a shared
= Average - 5.48 (same - previous 5.48) variable at roughly the same time (* - introduced today)
= The threads “race” to see which thread can write the value last to the
shared variable - this is the winner
= For programs to be synchronlzed, all thread updates (to shared
variables) must be SAVED

TCS5422: Computer Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington -Tacoma 185 OEEETERATR School of Engineering and Technology, University of Washington - Tacoma 186

Slides by Wes J. Lloyd L8.1

TCSS 422 A - Fall 2021
School of Engineering and Technology

FEEDBACK - 2

= CFS: is it basically a red black tree. where processes just
get queued onto the tree and it runs the left most leaf?

= The Linux Completely Fair Scheduler (CFS) is more than a
data structure
=The red black tree is how processes are indexed based on

vruntime so the next process can be rapidly found

= CFS is a multi-queue complete scheduler that models

process runtime to provide fairness for all scheduled jobs

10/26/2021

FEEDBACK - 3

= We've seen Linux CFS, but what do other OSes use as their
CPU scheduler? How are they better/worse than the CFS?

= All distros of Linux now generally used CFS

= Many other Oses may be closed source, so information
regarding their process/thread scheduling may be limited

= Windows 10

= Some suggest MLFQ

= ‘Windows uses priority-based preemptive scheduling where
the highest-priority thread runs next

= https://www.andrew.cmu.edu/course/14-712-
s20/applications/In/14712-16.pdf (see slide 5.60)

TCS5422: Operating Systems [Fall 2021]

‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma

[o]

TCSS422: Operating Systems [Fall 2021)

October22028 School of Engineering and Technology, University of Washington - Tacoma

[o]

FEEDBACK - 4

= MAC 0S X CPU Scheduler discussed in 2013 book:
= http://newosxbook.com/MOXil.pdf (see Chapter 11)

FEEDBACK - 5

= Should we always avoid parallel programming? Or should
we avoid parallel programming only in the context of
concurrency?

= You should never avoid parallel programming ... =)

= But parallel programming that does not involve sharing
memory can be far more painless

TCSS422: Operating Systems [Fall 2021]

‘ October26, 2021 School of Engineering and Technology, University of Washington - Tacoma.

[=] |

TCSS422: Operating Systems [Fall 2021]

October 26, 2021 School of Engineering and Technology, University of Washington - Tacoma

BONUS SESSION -
EXAMPLE SCHEDULER PROBLEMS

= Bonus session: Wednesday October 27 starting at 6:30pm
= Approximately ~1 hour

= Will solve a series of example scheduling problems
= Focus on: FIFO, SJF, STCF, RR, MLFQ

= Video will be live-streamed and recorded and posted

OBJECTIVES - 10/26

® Questions from 10/21

| = C Tutorlal - Polnters, StrInE, Exec In C - Due Frl Oct 29 |

= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS3422: Operating Systems [Fall 2021]

‘ Gl School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Fall 2021]

CE A School of Engineering and Technology, University of Washington - Tacoma

1812

11 12

Slides by Wes J. Lloyd

L8.2

https://www.andrew.cmu.edu/course/14-712-s20/applications/ln/14712-l6.pdf
http://newosxbook.com/MOXiI.pdf

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/26

10/26/2021

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
l Octobes2ei202.8 [School of Engineering and Technology, University of Washington - Tacoma. 813

13

QuIZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

® Posted in Canvas

= Due Tuesday Nov 2" at 11:59pm

= Grace period til Thursday Nov 4th at 11:59 ** AM **
= Late submissions til Saturday Nov 6" at 11:59pm

= Link:

= http://faculty.washington.edu/wlloyd/courses/tcss422/
T 422_s2021_qulz_1.pdf

TCS5422: Operating Systems [Fall 2021]
l (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma. 1815

15

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
iz 1 (Due Tue Nov 2 iz2 (Due Thur Nov 4)
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

l G A [TCS5422: Operating Systems [Fall 2021] or

School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
® Assignment 1 - Due Fri Nov 12
| Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) |
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021] 1814
School of Engineering and Technology, University of Washington - Tacoma

l October 26, 2021

14

QUIZ 2 - CPU SCHEDULING ALGORITHMS

® Quiz posted on Canvas

= Due Thursday Nov 4 @ 11:59p

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Unlimited attempts allowed

= Multiple choice and fill-in the blank

® Quiz automatically scored by Canvas
= Please report any grading problems

TCSS422: Operating Systems [Fall 2021] 1816

l (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

16

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Fall 2021

)]
Octobenzeianzi School of Engineering and Technology, University of Washington -

18

L8.3

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2021_quiz_1.pdf

TCSS 422 A - Fall 2021
School of Engineering and Technology

THREADS

Process. Multithreaded Process

Process State: PC, Theead | [Theead
State | | state

egiste
—

Process State: P
registers, 5P, et

"
Single : = 5 = Multi
5 ultiple
Threaded vatases SHARED =TS Thregded
Process Heap / Process
* * v «
L)
©Alred Park, hip://randu.org/utorials/hreads
TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma L8.19

19

PROCESS AND THREAD METAD

THREADS - 2

10/26/2021

= Enables a single process (program) to have multiple “workers”

= This is parallel programming...

= Supports independent path(s) of execution within a program

with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

TCSS422: Operating Systems [Fall 2021)

‘ October22028 School of Engineering and Technology, University of Washington - Tacoma

20

SHARED ADDRESS SPACE

= Thread Control Block vs. Process Control Block

Thread identif Process identification

Thread state Process status

CPU information: Process state:
Program counter Process status word
Register contents Register contents

Main memory
Thread priority Resources
Pointer to process that created this theead Process priarity
Pointers to all other threads created by this thread Accounting

TCSS422: Operating Systems [Fall 2021]

‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma

1821

21

THREAD CREATION EXAMPLE

= Every thread has it's own stack / PC

School of Engineering and Technology, University of Washington - Tacoma

0KB The cade segment: 0KB
Program Code | where instructions live Program Code
1K8 1K8
oss | The e sogme e
28 d mic data structs 28
{it grows downward)
{fres)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15K8 contains local variables 15K8
Stack (1) arguments to routines, Stack (1)
16K8 return values, et 16K8
A single-Threaded Two threaded
Address Space Address Space
‘ CErbrGEER TC55422: Operating Systems [Fall 2021] 1822

22

POSSIBLE ORDERINGS OF EVENTS

#include <stdio.h
#include <assert.h>
#include <pthread.h>

void smythread(void rarg) {
printf("$s\n", (char +) arg);
return NULL;

)

int
main(int arge, char +argv(l) {

pthread_t pl, p2;

int re;

printf("main: begin\n");
read_create(spl, NULL, mythread, "A"); assert (rc == 0);
read_create(sp2, NULL, mythread, "B"); assert (rc == 0);
// join waits for the threads to finish
; assert(rc == 0);
j assert(rc == 0);

TCS3422: Operating Systems [Fall 2021]

‘ iz 2 School of Engineering and Technology, University of Washington - Tacoma

18.23

23

Slides by Wes J. Lloyd

[mmemg | twewst | o2

Starts running
Prints ‘main: begin’
‘creaies Thread 1
Creates Thread 2
Waits for T1
Runs
Prints ‘A
Returns
» Waits for T2
Runs
Prints ‘8"

Returns

» Prints ‘main: end’

TCS5422: Operating Systems [Fall 2021]

‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma

18.24

24

L8.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

10/26/2021

POSSIBLE ORDERINGS OF EVENTS - 2 POSSIBLE ORDERINGS OF EVENTS - 3

Troad1 | Throas2 mmem | Tweass | o2

Starts running Starts running

Prints ‘main: begin’ Prints ‘main: begin’
Creates Thread 1

Creates Thread 1
Runs Creates Thread 2
Prints ‘A"
Retus What if execution order of
Cuiec o e events in the program matters?
Prints ‘B’ Runs
Returns Prints ‘A"
Waits for T1 Returns immediately Returns
Waits for T2

Returns immediately Waits for T2 Immediately returns
Prints ‘main: end’ Prints ‘main: end’

TCS5422: Operating Systems [Fall 2021]

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 26, 2021 School of Engineering and Technology, University of Washington - Tacoma

18.25

‘ October 26, 2021

25

26

COUNTER EXAMPLE PROCESSES VS. THREADS

= Counter example = What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end

= Threads: no duplication of code/heap, lightweight execution threads

= A + B : ordering
= Counter: incrementing global variable by two threads

Process Process i o - | ¥ o - =
= Is the counter example embarrassingly parallel? - l”“”::”m}"’””“:
stack stack stack
= What does the parallel counter program require? N “”4'3 ; o ;.fm,w,
e

singlohreaded procass mustithroadsd pracess

TCSS422: Operating Systems [Fall 2021]

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 26, 2021 School of Engineering and Technology, University of Washington - Tacoma

w2 ‘

October 26, 2021

27

OBJECTIVES - 10/26 RACE CONDITION

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)

= Chapter 26: Concurrency: An Introduction
| = Race condition]

= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma

= What is happening with our counter?

= When counter=50, ider code: = +1
= If synchronized, counter will = 52
(after instruction)
o5 Thread1 Thread2 PC Seax counter
before critical section w0 0 50
mov 0xB049alc, % 105 50 50
add $0x1, %eax 108 81 50
75 state

00 0 50
mov 0xa049ale, teax 105 50 50
. Beax 108 51 50
ax, (xe04%alc 113 51 51
e 108 51 50
feax, 0x8 113 51 e

529 ‘

29

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Fall 2021]

OEEETERATR School of Engineering and Technology, University of Washington - Tacoma

18.30

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
[= cCritical section |
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021]
l Octobes2ei202.8 [School of Engineering and Technology, University of Washington - Tacoma. 1831

31

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutexs

balance = balance + 1; Critical section

unlock (smutex) ;

(RN

= Counter example revisited

TCS5422: Operating Systems [Fall 2021]
l (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma 1833

33

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Fall 2021

J]
Cobobayze 2027 School of Engineering and Technology, University of Washington -

35

Slides by Wes J. Lloyd

10/26/2021

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical sectlon produce a
race condition.

= Atomlc executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCSS422: Operating Systems [Fall 202

1]
l October22028 School of Engineering and Technology, University of Washington - Tacoma -

32

WE WILL RETURN AT
4:53PM

TCSS422: Operating Systems [Fall 2021]

October2c.a021 School of Engineering and Technology, University of Washington -

34

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API|
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422: Operating Systems [Fall 2021]
l OEEETERATR [School of Engineering and Technology, University of Washington - Tacoma 1836

36

L8.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

THREAD CREATION

= pthread_create

¥include <pthread.h>

pthread create(

thread,
ed_attr_t* attr,

id* (*atart_routine) (void*),
= arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma 1837

37

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

neTe, mr
pthread create (ép, NULL, my\.hreuc.@]..'):
pthread_join(p, (%) &m);

12 printf (*returned ¥d\n”, m);

0;

TCS5422: Operating Systems [Fall 2021]
‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma 1839

39

struct myarg { . .
it hat will this code do?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

zﬁzgﬁi_gyzrﬁ;ompur’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
3 a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;
struct myarg args;
struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_ . .
b2 How can this code be fixed?

return 0

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L8.41

October 26, 2021

41

Slides by Wes J. Lloyd

10/26/2021

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.n>
ypedet struct _myarg t {
» as
nt b
} myarg £

roid *mythread (s {
myarg arg_t *) arg:
‘ mra, m>b);

*argv(]) {

main{

’-y

re = pthread_create(ép, HULL, mythread, &args)s

]

TCSS422: Operating Systems [Fall 2021) 1838

‘ October22028 School of Engineering and Technology, University of Washington - Tacoma

38

WAITING FOR THREADS TO FINISH

pthread_join(pthread t thread, i **value_ptr}:

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Fall 2021] 1840

‘ (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

40

struct myarg {)
e How about this code?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;
} $./pthread_struct
a=10 b=20

int main (int argc, char * argv([])

returned 1 2

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;
pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Fall 2021]

Scioberasiaual School of Engineering and Technology, University of Washington - Tacoma L8.42

42

L8.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

ADDING CASTS

10/26/2021

ADDING CASTS - 2

= Casting

= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passi argument 2 of ‘pthread_join’

from incompatible pointer type [-wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
Jusr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type 'int =*

extern int pthread_join (pthread_t __th, void **__thread_return);

TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma 1843

43

OBJECTIVES - 10/26

= Questions from 10/21
C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
thread_create/_join
thread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
‘ October26, 2021 School of Engineering and Technology, University of Washington - Tacoma. 845

45

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Excluslon”

= API

pthread_mutex_lock (pthread_mutex_t *mutex);
it pthread mutex_unlock (pthread mutex t *mutex);:

= Example w/o initialization & error checking

pthread mutex t lock:
pthread mutex lock (slock) :
®x=x+1;
pthread mutex unlock(slock) ;

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

‘ G A TCS5422: Operating Systems [Fall 2021] o7

School of Engineering and Technology, University of Washington - Tacoma

47

Slides by Wes J. Lloyd

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TC55422; Operating Systems [Fall 2021]
‘ October22028 School of Engineering and Technology, University of Washington - Tacoma

44

LOCKS

= pthread_mutex_t data type

= /usr/include/bits/pthread_types.h

// Global Address Space

static volatile int counter = 0;

void *worker(void *arg)
int i;

for (i=0;1<10000000;i++) {
assert(rc==0);

counter = counter + 1;

return NULL;

TC55422: Operating Systems [Fall 2021]
‘ October 26, 2021 School of Engineering and Technology, University of Washington - Tacoma

46

LOCK INITIALIZATION

= Assigning the constant

| pthread mutex_t lock = PTHREAD MUTEX INITIALIZER; ‘

= API call:

thread mutex init (slock, NULL); ‘

= |nitializes mutex with attributes specified by 2" argument
= If NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

7CS5422: Operating Systems [Fall 2021]
‘ CE A School of Engineering and Technology, University of Washington -Tacoma 1848

48

L8.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/26

= Error checking wrapper

i Pthread mutex lock(pthread mutex t *mutex) {
t rc = p d_mutex_lock (mutex) ;
assert(rc == 0];

+

= What if lock can’t be obtained?

pthread mutex_trylock(pthread mutex t *mutex):
pthread mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout):

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TCS5422: Operating Systems [Fall 2021]

‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma

18.49

49

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

nt pthread cond wait (pthread cond_t *cond,
pthread mutex t *mutex):
pthread cond_signal (pthread cond_t *cond):

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFQ queue<, lock is released
= Waits (llstens) for a “signal” (NON-BUSY WAITING, no polling)
= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

= Questions from 10/21
C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock,
pthread_cond_wait,
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

trylock
broadcast

unlock
signal,

timelock

TCSS422: Operating Systems [Fall 2021)

October22028 School of Engineering and Technology, University of Washington - Tacoma

50

CONDITIONS AND SIGNALS -2

int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal()

= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Fall 2021]

‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma

s ‘

TCSS422: Operating Systems [Fall 2021]

(Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

51

52

CONDITIONS AND SIGNALS -3

CONDITION AND SIGNALS - 4

= Wait example:
pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

pthread cond_t cond = PTHREAD_COND_INITIALIZER;
= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then r

= When initialized, another thread signals

pthread mutex lock(slock) ;
: <. — &
initialized = 1;

pthread mutex_lock (&lock) ;

while (initialized == 0)
pthread_cond_wait (&cond, &lock);

// Perform work that requires lock

a=a+b;

pthread mutex_unlock (&lock) ;

leased bv this co
State variable set,

Enables other thread(s)
to proceed above.

e)

<
pthread _cond_signal (sinit);
pthread mutex_unlock(&lock) ;

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

/7 Perform work that requires lock

a a+b
pthread_mutex_unlock (slock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCS3422: Operating Systems [Fall 2021]

‘ Gl School of Engineering and Technology, University of Washington -Tacoma

TCS5422: Operating Systems [Fall 2021]

OEEETERATR School of Engineering and Technology, University of Washington - Tacoma

18.54

53 54

Slides by Wes J. Lloyd

TCSS 422 A - Fall 2021 10/26/2021
School of Engineering and Technology

PTHREADS LIBRARY SAMPLE MAKEFILE

cc=gcc

= Compilation: CFLAGS=-pthread -I. -wall

gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread

= Explicitly links library with compiler flag all: $(binaries)
= RECOMMEND: using makefile to provide compiler arguments

binaries=pthread pthread_int pthread_lock_cond pthread_struct

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -o s@

= List of pthread manpages cl
= man -k pthread

ean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable
= clean target

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
l Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma 1855 October22028 School of Engineering and Technology, University of Washington - Tacoma 18:56

55 56

OBJECTIVES - 10/26

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12

Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction

= Race condition

CHAPTER 28 — | : l = Critical section

= Chapter 27: Linux Thread API
LOCKS . = pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast

= Chapter 28: Locks
Cintreduetion] Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
October 26, 2021 TCSS422: Operating Systems [Fall 2021] l T TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - School of Engineering and Technology, University of Washington - Tacoma

57 58

—
= Ensure critical section(s) are executed atomically-as a unit = Lock variables are called “MUTEX”
= Only one thread is allowed to execute a critical section at any given = Short for mutual exclusion (that’s what they guarantee)
time
= Ensures the code snippets are “mutually exclusive”
= Lock variables store the state of the lock
= Protect a global counter:
[balance — balance + 1; = States
= A “critical section”: = Locked (acquired or held)
1 lock_t mutex; . . = Unlocked (available or free)
2 -
3 lock(amutex):
4 balance = balance + 1; = Only 1 thread can hold a lock
5 unlock (smutex) ;
TCSS422: Oy ating Syste [Fall 2021] TCSS422: Oy iting Syste [Fall 2021]
l CERARETE BT AT A e s T 1859 l CE A Schoo ofEngineering and Technology, University of Washington -Tacoma 18e0

59 60

Slides by Wes J. Lloyd L8.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

" pthread mutex_lock (&lock)
= Try to acquire lock
= If lock is free, calling thread will acquire the lock
=Thread with lock enters critical section
Thread “owns” the lock

= No other thread can acquire the lock before the owner

releases it.

TCS5422: Operating Systems [Fall 2021]

‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma

1861

61

LOCKS - 4

= Program can have many mutex (lock) variables to
“serialize” many critical sections

Locks are also used to protect data structures

= Prevent multiple threads from changing the same data

simultaneously
= Programmer can make sections of code “granular”

Fine gralned - means just one grain of sand at a time through an

hour glass

=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,

row, field

TCSS422: Operating Systems [Fall 2021]

‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma

18.63

63

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock (&lock_b);

a = b++;

pthread_mutex_unlock (&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock (&lock_b);
=a* c;
pthread_mutex_unlock (&lock_b);

pthread_mutex_lock (&lock_d);
*d = a+ b +c;
pthread_mutex_unlock (&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock (&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCS5422: Operating Systems [Fall 2021]

‘ iz 2 School of Engineering and Technology, University of Washington - Tacoma

18.65

65

Slides by Wes J. Lloyd

10/26/2021

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction,|Lock Granularity]|
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 26, 2021

62

FINE GRAINED?

= |s this code a good example of “fine grained parallellsm”?

pthread_mutex_Tlock(&lock);
a = b++;
b=a*c;
*d =a+ b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
fn
: .
e=e-1;
pthread_mutex_unlock (&lock) ;

TCSS422: Operating Systems [Fall 2021]

‘ (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

64

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED
Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

Low overhead from
minimal locking
Less parallelism

Low code complexity
& simpler debugging

More overhead from
excessive locking

More parallelism

Higher code complexity
& debugging

Every program
implementation
lies someplace along
the trade-off space...

7CS5422: Operating Systems [Fall 2021]
‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma Lo

66

L8.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness gocfi lock?
= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

= Overhead

TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma L8.67

67

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

lock() |
DisableInterrupts(}s

unlock () {
EnableInterrupts();
= Any thread could disable system-wide interrupt

= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

TC55422; Operating Systems [Fall 2021]
‘ October26, 2021 School of Engineering and Technology, University of Washington - Tacoma 18.69

69

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks

= |s this lock implementation: (1)Correct? (2)Falr? (3)Performant?

1ty _lock t { int flag: } lock t;
2

3 init(lock_t *mutex) [
4 y 2

5 mutex->flag =

|

B *mutex) |
] ->flag == 1)
10 .

1 mitex->rlag = 17

12

13

14

15 mutex->£lag = 0

16 |}

TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington -Tacoma 187

71

Slides by Wes J. Lloyd

BUILDING LOCKS

= Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHG8B
CMPXCHG16B

‘ October 26, 2021 TC55422; Operating Systems [Fall 2021]

68

70

OBJECTIVES - 10/26

= Questions from 10/21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks| Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

School of Engineering and Technology, University of Washington - Tacoma L8.68

TC55422: Operating Systems [Fall 2021]
October 26, 2021 School of Engineering and Technology, University of Washington - Tacoma 1870

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1;

= Here both threads have “acquired” the lock simultaneously

7CS5422: Operating Systems [Fall 2021]
CE A School of Engineering and Technology, University of Washington -Tacoma 1872

72

10/26/2021

L8.12

TCSS 422 A — Fall 2021

10/26/2021
School of Engineering and Technology

DIY: PERFORMANT? OBJECTIVES - 10/26

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12

R)) R ®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
// while Tock is unavailable, wait. = Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section

= What is wrong with while(<cond>); ? - Enarmiey 21 LG wlineed A

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast

void Tock(lock_t *mutex)
{

mutex->flag = 1;

= Spin-waiting wastes time actively waiting for another thread

. i = Chapter 28: Locks

= while|(1); will¥peg™alCPU core at 100% . In?roduction Lock Granularity
= Continuously loops, and evaluates mutex->flag value... = Spin Locks :I'est and Set] Compare and Swap
= Generates heat...

= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma 1873 October22028 School of Engineering and Technology, University of Washington - Tacoma 1874

73 74

TEST-AND-SET INSTRUCTION DIY: TEST-AND-SET - 2

= Hardware support required for working locks
= Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock

= C version: requires preemptive scheduler on single core system
® Lock is never released without a context switch

R X = single-core VM: occasionally will deadlock, doesn’t miscount
= Assumption is this “C code” runs atomically on CPU: T typeser T Tock E
1 TestAndSet (int *ptr, int new) { ER e
2 ol tes : ’
: *ptr = m 5 init(lock_t *lock) |
s) H
8 lock->flag -
= |lock() method checks that TestAndSet doesn’t return 1 3(1
= Comparison is in the caller 1 Lock(lock_t *lock)
12 (TestAndSet (ilock->flag, 1) == 1)
13 :
N N .)
= Can implement the C version (non-atomic) and have some 15
success on a single-core VM 1 jnlockilock t *lock) (
17 lock->flag =
®)
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ October26, 2021 School of Engineertng and Technology; Uiversity of Washington - Tacoma 1875 ‘ October 26, 2021 School of Engineeing and Technology, Universty of Washington ~Tacoma 1876

75 76

SPIN LOCK EVALUATION OBJECTIVES - 10/26

= C . ® Questions from 10/21
orrectness: = C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Spin locks with atomic Test-and-Set:

= Assignment 1 - Due Fri Nov 12
Critical sections won’t be executed simultaneously by (2) threads = Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)

= Chapter 26: Concurrency: An Introduction

= Falrness: = Race condition
= Critical section
= No fairness guarantee. Once a thread has a lock, nothing forces it to = Chapter 27: Linux Thread API
relinquish it...

= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= Performance: = pthread_cond_wait/_signal/_broadcast
o G (el § “h iting” = Chapter 28: Locks
pin locks perform “busy waiting = Introduction, Lock Granularit:
= Spin locks are best for short periods of waiting (< 1 time quantum) = Spin Locks, Test and Set,/Compare and Swap
= Performance is slow when multiple threads share a CPU = Chapter 29: Lock Based Data Structures
Especially if “spinning” for long periods * Sloppy Counter . i
= Concurrent Structures: Linked List, Queue, Hash Table
TCSS422: Operating Syste [Fall 2021] TCSS422: O ting Syste [Fall 2021]

77 78

Slides by Wes J. Lloyd L8.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”
= Upcoming in Chapter 32

TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma 1879

79

[| |
"When implementing locks in a high-level language "

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable

Condition variables

ATOMIC instructions

Fairness

None of the above

] - hel |
™ o comten, .

81

LL/SC LOCK

1 © LoadLinked(int *ptr) {

2 *ptr;

3 I

4

5 o 1iint *ptr, int value) {
6 o one has updated *ptr since the Loadiinked to this address) (
7

9 I t

10

11)

1z}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington -Tacoma 1883

83

Slides by Wes J. Lloyd

COMPARE AND SWAP

= Compare and Swap

dSwap (Lr

Comp

“ptr, int expected, in

actual;

PSR C implementation 1-core VM:
Count is correct, no deadlock

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

TC55422; Operating Systems [Fall 2021]
‘ October22028 School of Engineering and Technology, University of Washington - Tacoma

80

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TC55422: Operating Systems [Fall 2021]
‘ (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

82

LL/SC LOCK - 2

1 i lock(lock_t *lock) [

2 (SN

3 (LoadLinked(slock->flag) == 1}
4 :

5 {StoreConditional (slock->flag, 1) == 1)
7

8 1

L]

10

1 unlock (lock_t *lock) {

12 lock->flag = 0:

13}

= Two instruction lock

7CS5422: Operating Systems [Fall 2021]
‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma 1l

84

TCSS 422 A — Fall 2021

10/26/2021
School of Engineering and Technology

OBJECTIVES - 10/26

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Assignment 1 - Due Fri Nov 12

®= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)

CHAPTER 29 _ X 7 i L} C.h;:‘::rcfr?d:ig:::currency:An Introduction
= Critical section

LOCK BASED 3 2 = Chapter 27: Linux Thread API

5 = pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
DA A STR U CTU R ES ‘ = pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
Locks, Test and Set, Compare and Swap
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
October22028 School of Engineering and Technology, University of Washington - Tacoma 18.85

TCSS422: Operating Systems [Fall 2021]
(e) School of Engineering and Technology, University of Washington -

85 86

LOCK-BASED

CONCURRENT DATA STRUCTURES COUNTER STRUCTURE W/0 LOCK

= Adding locks to data structures make them = Synchronization weary --- not thread safe
thread safe. : suet _cownter b |
3 } counter_t;
L]
. . 5 init (counter_t *c) {
= Considerations: 6 c->value = 0
7 i
=Correctness e
9 increment (count
=Performance R Fmens
12
=Lock granularity 12 decrement (counter t *c) [
1 c->value--;
15 1
16
17 get{counter_t *c) |
18 n c->value;
19]
[odoberzoam |1 oot B0 hrgon s [odberzoam |1 oo B0 v T

87 88

CONCURRENT COUNTER CONCURRENT COUNTER - 2

1 £ tr counter_t {
h ot vaiies - = Decrease counter
3 pthread_lock t lock: = Get value
q) counter_t;
[id init(counter t *c) | (cont.)
7 c->value = 0; 17 i decrement (counter_t *cj
8 Pthread mutex_init({tc->lock, NULL); 18 Pthread_mutex lock{sc->lock):
k]] 19 c->value--;
10 20 Pthread mutex unlock(&c->lock) s
11 i increment (counter t *c) (21]
12 Pthread mutex_lock(&c->lock): 22
13 c->value++i 23
14 Pthread mutex unlock(&c->lock)s 24
15] 25
16 26
27
= Add lock to the counter = !
= Require lock to change data
TCSS422: Operatir stems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
l CERARETE ol o egnsta s Tl el of Weshigton STasoma 1889 l (e o of Exgiye at Teloy Unvrsty of Wasingion “Tacom 180

89 90

Slides by Wes J. Lloyd L8.15

TCSS 422 A - Fall 2021 10/26/2021
School of Engineering and Technology

CONCURRENT COUNTERS - PERFORMANCE PERFECT SCALING

= jMac: four core Intel 2.7 GHz i5 CPU = Achieve (N) performance gain with (N) additional resources
= Each thread increments counter 1,000,000 times

15

= Throughput:
= Transactions per second (tps)

81
§i = 1 core
Es =N =100 tps
o Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024 = 10 cores (x10)
=N =1000 tps (x10)

scales poorly

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma 891 October22028 School of Engineering and Technology, University of Washington - Tacoma 18.92

‘ October 26, 2021

91 92

OBJECTIVES - 10/26 SLOPPY COUNTER

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29 " Provides Single Iogical shared counter
= Assignment 1 - Due Fri Nov 12 = Implemented using local counters for each ~CPU core
: Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) 4 CPU cores = 4 local counters & 1 global counter

Chapter 26: Concurrency: An Introduction
= Race condition Local counters are synchronized via local locks
* Critical section = Global counter is updated periodically

= Chapter 27: Linux Thread API
= pthread_create/_join Global counter has lock to protect global counter value

= pthread_mutex_lock/_unlock/_trylock/_timelock Sloppiness threshold (S):
= pthread_cond_wait/_signal/_broadcast Update threshold of global counter with local values
= Chapter 28: Locks Small (S): more updates, more overhead

= Introduction, Lock Granularity

Large (S): fewer updates, more performant, less synchronized
= Spin Locks, Test and Set, Compare and Swap ge (S) P p i

Chapter 29: Lock Based Data Structures = Why this implementation?
= Sloppy Counter Why do we want counters local to each CPU Core?
= Concurrent Structures: Linked List, Queue, Hash Table

‘ October 26, 2021

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma. 1893 (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma 1894

93 94

SLOPPY COUNTER - MAIN POINTS SLOPPY COUNTER - 2
= |dea of Sloppy Counter is to RELAX the synchronization = Update threshold (S) = 5
requirement for counting = Synchronized across four CPU cores
= Instead of synchronizing global count variable each time: = Threads update local CPU counters
counter=counter+1
mime | 1, | oL | | o G
= Synchronization occurs only every so often: 0 o 0 [0 0
e.g. every 1000 counts 1 0 0 1 1 0
. o . . 2 1 0 2 1 0
= Relaxing the synchronization requirement drastically 3 5 o 2 1 0
reduces locking APl overhead by trading-off split-second a 3 o 3 2 0
accuracy of the counter 5 4 1 3 3 0
6 520 1 3 4 5 (from L,)
= Sloppy counter: trade-off accuracy for speed 7 0 2 N 530 10 (from L)
= It’s sloppy because it’s not so accurate (until the end)
[owmerzeam |G ommmenen U s o [oomezmaon | et O ngn s

95 96

Slides by Wes J. Lloyd L8.16

TCSS 422 A - Fall 2021
School of Engineering and Technology

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each

= Low S > What is the consequence?
= High S - What is the consequence?

15

Time (seconds)

04— T — T ————
12 4 8 16 32 64 128256 5121024
Sloppiness

TCS5422: Operating Systems [Fall 2021]

‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma

97

OBJECTIVES - 10/26

= Questions from 10/21
C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Assignment 1 - Due Fri Nov 12
Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
Queue, Hash Table

TC55422; Operating Systems [Fall 2021]
(Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma.

99

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

TCS3422: Operating Systems [Fall 2021]

‘ Gl School of Engineering and Technology, University of Washington -Tacoma

L8101

101

Slides by Wes J. Lloyd

18.97

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

10/26/2021

TCSS422: Operating Systems [Fall 2021)

‘ October22028 School of Engineering and Technology, University of Washington - Tacoma

98

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

__node_t |
ke
struct _ node_t *next:
) node_t;

TCSS422: Operating Systems [Fall 2021]

‘ (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma

18.100

100

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32

{curr->key == key) {
pthread_mutex_unlock {sL->10ck) ;

CUrY = CUrr->next;

1
pthread mutex_unlock(sL->lock);
EN

TCS5422: Operating Systems [Fall 2021]

‘ OEEETERATR School of Engineering and Technology, University of Washington - Tacoma

18102

102

L8.17

TCSS 422 A - Fall 2021 10/26/2021
School of Engineering and Technology

CONCURRENT LINKED LIST CCL - SECOND IMPLEMENTATION

= First Implementation: = Init and Insert
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released
Research has shown “exceptlon-based control flow” to be error
prone
40% of Linux OS bugs occur in rarely taken code paths
Unlocking in an exception handler is considered a poor coding

practice 1
. ; . . ; 13 new->key = keyr
There is nothing specifically wrong with this example however 14
15
16 pthread mutex_lock(¢L->lock) s
. 17
= Second Implementation ... 16
19 unlock(aL->Lack) £
20 !
21
TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma L8.103 ‘ October22028 School of Engineering and Technology, University of Washington - Tacoma Le104

103 104

CCL - SECOND IMPLEMENTATION - 2 CONCURRENT LINKED LIST PERFORMANCE

= Lookup = Using a single lock for entire list is not very performant
Cont.) = Users must “wait” in line for a single lock to access/modify
22 LJsl_huukup[lelL_L L, key) [any item
23 v = i
24 _lock(sL->lock) ; = Hand-over-hand-locking (lock coupling)
25
26 = Introduce a lock for each node of a list
o ““"”‘:‘e_" == ke o = Traversal involves handing over previous node’s lock,
2 5 acquiring the next node’s lock...
30 1
1 [= Improves lock granularity
3z 1 L]
a3 pthread_mutex_unlock (§L->lock) 7 Degrades traversal performance
34 1 e "
35 1] . N
= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma 18.105 ‘ (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma 18.106

105 106

OBJECTIVES - 10/26 MICHAEL AND SCOTT CONCURRENT QUEUES

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29 = Improvement beyond a single master lock for a queue (FIFO)

= Assignment 1 - Due Fri Nov 12 = Two locks:
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) = One for the head of the queue
= Chapter 26: Concurrency: An Introduction = One for the tall

= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock ® Add aldummynode
= pthread_cond_wait/_signal/_broadcast = Allocated in the queue initialization routine
= Chapter 28: Locks = Supports separation of head and tail operations
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Synchronize enqueue and dequeue operations

= [tems can be added and removed by separate threads at the

= Sloppy Counter same time
= Concurrent Structures: Linked List, Hash Table
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma 18107 OEEETERATR School of Engineering and Technology, University of Washington - Tacoma 18108

107 108

Slides by Wes J. Lloyd L8.18

TCSS 422 A - Fall 2021 10/26/2021
School of Engineering and Technology

CONCURRENT QUEUE CONCURRENT QUEUE - 2

= Remove from queue = Add to queue
1 __node_t | (Cont.}
2 lue s o
H R 2 Queue_Enqueue (queue_t g, value) {
i | node t: - node_t *tmp = malloc((node_t))
5 - assert (tmp I= ;
&
7 tmp->value = value:
8 tmp->next = 2
10 pthread mutex lock(seq->taillock) s
1 = = tmp:
12
13 .
11 (node £))7 _unlock{&g->taillock) ;
15)
16 ;
17 %_init (sq->he
128 ex_init (kg->ta
19 1

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ Octobes2ei202.8 School of Engineering and Technology, University of Washington - Tacoma L8.109 October22028 School of Engineering and Technology, University of Washington - Tacoma Le110

109 110

OBJECTIVES - 10/26 CONCURRENT HASH TABLE

= Questions from 10/21

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29 = Consider a simple hash table
= Assignment 1 - Due Fri Nov 12 . 0 n

= Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) = Fixed (static) size

.

Chapter 26: Concurrency: An Introduction =Hash maps to a bucket
* Race condition

= Critical section Bucket is implemented using a concurrent linked list
= Chapter 27: Linux Thread API One lock per hash (bucket)
= pthread_create/_join . . .
= pthread_mutex_lock/_unlock/_trylock/_timelock Hash bucket is a linked lists
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ (Octoher26,2021 School of Engineering and Technology, University of Washington - Tacoma. a1 (Octoner26,2021 School of Engineering and Technology, University of Washington - Tacoma L8112

111 112

INSERT PERFORMANCE -

CONCURRENT HASH TABLE CONCURRENT HASH TABLE

N 1 BUCKETS (101
= Four threads - 10,000 to 50,000 inserts : BUBKETS (101)
= iMac with four-core Intel 2.7 GHz CPU 3] t . 2 h[; !
4 ist_t lists(BUCKETS];
15 5 J hash_t:
O Simpie Cancurient List H
* Gontunrent Hash Tedle 7 Hash_Init (hash_t *H) [
_ E) i
Z10 B for (4 = 07 i < BUCKETS; i++) {
5 10 List_Init (sH->lists(i]);
s 11]
: s
E 5 2
L - 14 t Hash_Insert (has!
15 t bucks
_,/’E/ 16 List_d
0+ - ¥ - + 17)
0 10 20 30 40 18
Inseris (Thausands) b “““-L“’Jk}é—‘(ﬂ::”;i";" i LA
scales 21 1 List_Lookup(sH->1ists[bucket], key):
22)
TCS$422: Operating Systems [Fall 2021] TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington -Tacoma OEEETERATR School of Engineering and Technology, University of Washington - Tacoma (114

113 114

Slides by Wes J. Lloyd L8.19

TCSS 422 A - Fall 2021
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.

structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

115

QUESTIONS

117

Slides by Wes J. Lloyd

LOCK-FREE DATA STRUCTURES

" Lock-free data structures in Java

® Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/
iava.base/java/util/concurrent/atomic/package-summary.html

October 26, 2021 TCSS422: Operating Systems [Fall 2021)

School of Engineering and Technology, University of Washington - Tacoma

116

10/26/2021

L8.20

