TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Proportional Share
Schedulers,
Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

Cricbeia1 2024 School of En Technology, University of Washingtor

TEXT BOOK COUPON

= 15% off textbook code: SPOOKY15 (through Friday Oct 22)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.htmlI?page=1&pageSize=4

TC55422; Operating Systems [Fall 20211
‘ Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma.

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021

Home

Announcerents

Zoom + Upcoming Assignments

Slabus ¢ TCS5422- Online Daily Feedback Survey - 4/1
= i I ¥ Avalable until Apr 5 at L1:5%pm | Dus Apr 5 at 10pm | /Lpts

Diceuscinne Avan.r
TCS5422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 21, 2021

Slides by Wes J. Lloyd

10/21/2021

OFFICE HOURS - FALL 2021

=Tuesdays:
=4:00 to 4:30 pm - CP 229
=7:15 to 7:45+ pm - ONLINE via Zoom
=Thursdays
=4:15 to 4:45 pm - ONLINE via Zoom
=7:15 to 7:45+ pm - ONLINE via Zoom
=0r email for appointment
mZoom link sent via Canvas Announcements

> Office Hours set based on Student Demographics survey feedback

TC55422; Operating Systems [Fall 2021]
‘ Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/21

| = Questions from 10/19 |

= Assignment O - Due Fri Oct 22

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
® Quiz 1 and Quiz 2

= Chapter 9: Proportional Share Schedulers

= Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler
Chapter 26: Concurrency: An Introduction

= Introduction

= Race condition

= Critical section
Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

TC55422: Operating Systems [Fall 2021]
(Octoner21,2021 School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
Question 1 058

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

12 3 4 s & 7 8 3 1
TCSS422: Computer Operating Systems [Fall 2021)
Sciber2iiaual School of Engineering and Technology, University of Washington - Tacoma L76

L7.1

https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MATERIAL / PACE FEEDBACK

= Please classify your perspective on material covered in today’s u?
class (21 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.48 (4 - previous 6.62)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.48 (4 - previous 5.54)

‘ October21, 2021 TCS5422: Computer Operating Systems [Fall 2021] 7 ‘ October21, 2021 TCS5422: Operating Systems [Fall 2021] s

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

BONUS SESSION -
EXAMPLE SCHEDULER PROBLEMS

OBJECTIVES - 10/21

= Questions from 10/19

= Bonus session o Zoom: [="Assignment 0 - Due Fri Oct 22]
Wed Oct 27 starting at 6:30pm = C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
= Approximately ~1 hour ® Quiz 1 and Quiz 2

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Will solve a series of example scheduling problems = Ticket mechanisms
= Stride scheduler
= Focus on: FIFO, SJF, STCF, RR, MLFQ = Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Video will be recorded and posted g‘;;":::::i;'ion
= Critical section
= Midterm In class on Thursday November 4th - c_";‘;:z;:ﬁ:;:‘e“/"_i?i‘;ead o
. pthread:mutex_lcck/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ October21,2021 School of Engineering and Technology, University of Washington - Tacoma. 7.9 October21, 2021 School of Engineering and Technology, University of Washington - Tacoma 17.10

ASSIGNMENT O - DUE FRI OCT 22 OBJECTIVES - 10/21

. = Questions from 10/19
® Due Friday Oct 22 @ 11:59pm = Assignment O - Due Fri Oct 22

= Grace period: submission ok til Sun Oct 24 @ 11:59 AM |=_C Tutorlal - Polnters, Strings, Exec In C - Due Frl Oct 29
F—) 0 . ® Quiz 1 and Quiz 2
= Late submissions: ok til Tuesday Oct 26 @ 11:59pm = Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma b CEFLR A School of Engineering and Technology, University of Washington - Tacoma 2

11 12

Slides by Wes J. Lloyd L7.2

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

OBJECTIVES - 10/21 QuIZ 1

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

= Active reading on Chapter 9 - Proportional Share Schedulers

|= Quiz1 and Quiz 2 | = Posted in Canvas

= Chapter 9: Proportional Share Schedulers d .
» Lottery scheduler = Due Tuesday November 2" at 11:59pm
= Ticket mechanisms = Grace period til Thursday Nov 4th at 11:59 ** AM **
* Stride scheduler = Late submissions til Saturday Nov 6th at 11:59pm
= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction

= Introduction = Link:
: 2::;:?::3:2: = http://faculty.washington.edu/wlloyd/courses/tcss422/
T 422 2021 iz_1.pdf

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broad

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
l Ctobena 2028 [School of Engineering and Technology, University of Washington - Tacoma. 13 DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma 1714

13 14

QuIZ 2 COMING SOON...

= Canvas Quiz - CPU Scheduling Problems = Assignment #1
= To be posted for next class, Tuesday Oct 26
® Posted in Canvas
= Unlimited attempts permitted = Midterm Exam
= Due Thursday November 4t" at 11:59pm

= Thursday November 4th
= Grace period til Saturday Nov 6" at 11:59 ** AM ** v

.) = |n Class
= Late submissions til Monday Nov 8" at 11:59pm
= Link:
= https://canvas.uw.edu/courses/1484473/quizzes/1555405
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
l Octoher2132021 R e W e e = D 7.5 l October 21,2021 AN e e e O M = D 1716

15 16

OBJECTIVES - 10/21

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
® Quiz 1 and Quiz 2
= Chapter 9: Proportional Share Schedulers
|__= Lottery scheduler |
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

TCS5422: Operating Systems [Fall 2021]
l OEEETRELATR [School of Engineering and Technology, University of Washington - Tacoma 1718

CHAPTER 9 -

PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Fall 2021

J]
Coebayzianzy School of Engineering and Technology, University of Washington -

17 18

Slides by Wes J. Lloyd L7.3

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1484473/quizzes/1555405

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

PROPORTIONAL SHARE SCHEDULER

OTTERY SCHEDULER

= Also called fair-share scheduler

= Simple implementation
or lottery scheduler

= Just need a random number generator
= Guarantees each job receives some percentage of CPU Picks the winning ticket
time based on share of “tickets”

= Maintain a data structure of jobs and tickets (list)
= Each job receives an allotment of tickets

= Traverse list to find the owner of the ticket
= % of tickets corresponds to potential share of a resource

= Consider sorting the list for speed
= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TC55422; Operating Systems [Fall 2021]
‘ Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma 1719

19

TC55422; Operating Systems [Fall 2021]
DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma 17.20

20

LOTTERY SCHEDULER IMPLEMENTATION

OBJECTIVES - 10/21

—_ - ® Questions from 10/19
g h rd ™, . "
[JobA | [JobB | JobC = Assignment O - Due Fri Oct 22
head \ Tix100 | Tix50 > Tix250 ‘Jl_’NULL = C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
i S S — = Quiz 1 and Quiz 2
.

\ /

Chapter 9: Proportional Share Schedulers
= Lottery scheduler

1

H [__=Ticket mechanisms]
:

;

s

s

counter

- o, totalticket = Stride scheduler
winner = getrandom(0, totaltickets); A .
= Linux Completely Fair Scheduler

node_t *current = head; = Chapter 26: Concurrency: An Introduction
11 = Introduction
+ current->tickets; M aceicontition

) = Critical section
£ ; = Chapter 27: Linux Thread API
L = pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ br

‘ G TR TCs5422: Operating Systems [Fall 2021] ot ‘

TC55422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma October 21, 2021 School of Engineering and Technology, University of Washington - Tacoma L2

12 (curr

21 22

TICKET MECHANISMS

TICKET MECHANISMS - 2

= Ticket currency / exchange

= Ticket transfer
= User allocates tickets in any desired way

= Temporarily hand off tickets to another process
= 0S converts user currency into global currency

= Ticket inflation
= Example:

= Process can temporarily raise or lower the number of

= There are 200 global tickets assigned by the 0S tickets it owns

= If a process needs more CPU time, it can boost tickets.
User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 2 50 (global currency)

User B > 10(B's currency) to B1 - 100 (global currency)

TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington -Tacoma 172

23

7CS5422: Operating Systems [Fall 2021]
CEFLR A School of Engineering and Technology, University of Washington -Tacoma 1724

24

Slides by Wes J. Lloyd L7.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

LOTTERY SCHEDULING

10/21/2021

COIN FLIPPING

= Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:
= Given 100 tickets in the pool
= Job A has 75 tickets: 0 - 74
= Job B has 25 tickets: 75 - 99
Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: &4 B A A B A A A A A A B A B A

= But what do we know about probability of a coin flip?

TC55422; Operating Systems [Fall 2021]
l Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma 1725

25

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets

Unfaimess {Average)

10 100
Job Langlh

b length is not very lol
ess can be

TCS5422: Operating Systems [Fall 2021]
Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma

27

WE WILL RETURN AT

2:40PM

TCSS422: Operating Systems [Fall 2021]
Coebayzianzy School of Engineering and Technology, University of Washington -

29

Slides by Wes J. Lloyd

= Equality of distribution (fairness) requires a lot of flips!

I .
0 Al heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Incressing number of con losees

TC55422; Operating Systems [Fall 2021]
l DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma 17.28

26

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best
= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?
= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TC55422: Operating Systems [Fall 2021]
l (Octoner21,2021 School of Engineering and Technology, University of Washington - Tacoma 1728

28

OBJECTIVES - 10/21

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
® Quiz 1 and Quiz 2
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
|[__= Stride scheduler]
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ br
TCS5422: Operating Systems [Fall 2021]
l OEEETRELATR [School of Engineering and Technology, University of Washington - Tacoma 1730

30

L7.5

TCSS 422 A - Fall 2021
School of Engineering and Technology

STRIDE SCHEDULER

10/21/2021

STRIDE SCHEDULER - 2

= Addresses statistical probability issues with

lottery scheduling

= |nstead of guessing a random number to select a

job, simply count...

TCS5422: Operating Systems [Fall 2021]

‘ Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma

17.31

31

STRIDE SCHEDULER - 3

= Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running
3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job...

TCSS422: Operating Systems [Fall 2021]

‘ October21,2021 School of Engineering and Technology, University of Washington - Tacoma

17.33

33

STRIDE SCHEDULER EXAMPLE - 2

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > A4 = 10000/100 = 100 stride
= Job B has 50 tickets > B4 =10000/50 = 200 stride
= Job C has 250 tickets > C,q. = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCS5422: Operating Systems [Fall 2021] 32
School of Engineering and Technology, University of Washington - Tacoma

‘ October 21,2021

32

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TC55422: Operating Systems [Fall 2021]
‘ October21, 2021 School of Engineering and Technology, University of Washington - Tacoma 17:34

34

STRIDE SCHEDULER EXAMPLE - 3

= Three-way tie: randomly pick job A (all pass values=0)

= Set A’s pass value to A’s stride = 100
® Increment counter until > 100
= Pick a new job: two-way tie

Pass(A) Pass(£) Pass(C) Wheo Runs?
(stride=100) (stride=200) (stride=40)

]] 0 A
100 o] 0
100 200 0 c
100 200 40 c
100 200 80 c
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

Tickets
C =250
A =100
B = 50

. Initial job selection
is random. All @ 0

ﬁ C has the most tickets
and receives a lot of
opportunities to run...

TCS3422: Operating Systems [Fall 2021]

‘ October21, 2021 School of Engineering and Technology, University of Washington - Tacoma.

17.35

35

Slides by Wes J. Lloyd

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(F) Pass(C) Wheo Runs? A =100
(stride=100) (stride=200) (stride=40) B =50
0 0 0 A
100 0 0
100 200 0 <
100 200 40 C ﬁ C has the most tickets
100 200 80 c and is selected to run
100 200 120 A more often ...
200 200 120 c
200 200 160 c
200 200 200
| osobermnam | TSm0 ey ot s vas

36

L7.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next

= Over time jobs are scheduled to run based on their

Tickets
C =250
A =100
B = 50

priority represented as their share of tickets...
= Tickets are analogous to Job priority
Pass(A) Pass(E) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)
] 0 1] A
100 0 0
100 200 0 c
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 c
200 200 200

TCS5422: Operating Systems [Fall 2021]

Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma

37

LINUX: COMPLETELY FAIR SCHEDULER

= Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)
= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel
= 5% of CPU time spent

in the CPU scheduler! %30
25
20
15}
10}

= Study highlights
importance for
high performance

(CFS)

kemel

kermel/sehed

Cycles In kemel co
w

0S kernels and
CPU schedulers!

R
353355 ¢&
Figure 5: Kernel time, especially time spent

is a significant fraction of WSC cycles.
Soe: ntepe: 7494652780302

Now yy

in the scheduler,

TC55422; Operating Systems [Fall 2021]
October21,2021 School of Engineering and Technology, University of Washington - Tacoma.

17.39

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
= §class
ps -elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

TCS3422: Operating Systems [Fall 2021]

Gl School of Engineering and Technology, University of Washington - Tacoma

17.41

41

Slides by Wes J. Lloyd

17.37

OBJECTIVES - 10/21

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
® Quiz 1 and Quiz 2
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
|___= Linux Completely Fair Scheduler |
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

10/21/2021

TC55422; Operating Systems [Fall 2021]
DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma

17.38

38

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System
= In perfect system every process of the same priority (class)

receive exactly 1/nt" of the CPU time

= Each scheduling class has a runqueue
= Groups process of same class

= In class, scheduler picks task w/ lowest vruntime to run

= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

TCSS422: Operating Systems [Fall 2021]

October21, 2021 School of Engineering and Technology, University of Washington - Tacoma

17.40

40

COMPLETELY FAIR SCHEDULER - 3

® Linux 2 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long

each thread/process has run
= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysct] kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

TC55422: Operating Systems [Fall 2021]

CEFLR A School of Engineering and Technology, University of Washington - Tacoma

17.42

42

L7.7

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 4 CFS TRADEOFF

= Sched_min_granularity_ns (3ms) = HIGH sched_min_granularity_ns (timeslice)
= Time slice for a process: busy system (w/ full runqueue) sched_1atency_ns
= If system has idle capacity, time slice exceed the min as long as sched_wakeup_gr‘anu'l ar"ity_ns

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity ns reduced context switching > less overhead
(4ms)

poor near-term fairness
= Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run
(like round robin)

= Example:
sched_latency_ns (24ms)
Jieroclinltnatetebchedilateneyan=rEchedininsd tapulanic) increased context switching - more overhead
or A
sched_min_granularity * number of processes in runqueue better near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

Ref: Nttps://www.systutorlals.com/sohed_min_granularity_ns-sshsd_latency_ns-cfs-atfact-timesiice-Aracessss/

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ (e L School of Engineering and Technology, University of Washington - Tacoma. 1743 DStobes2UR0 28 L7.44

School of Engineering and Technology, University of Washington - Tacoma

43 44

COMPLETELY FAIR SCHEDULER - 5 CFS: JOB PRIORITY

= Runqueues are stored using a linux red-black tree = Time slice: Linux “Nice value”
= Self balancing binary tree - nodes indexed by vruntime = Nice predates the CFS scheduler
= Leftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed

= Top shows nice values

= Process command (nice & priority):
ps ax -o pid,ni,cmd, $cpu, pri

Nodes represent
sched_entity(s)
indexed by their
virtual runtime:

= Nice Values: from -20 to 19
= Lower is higher priority, default is 0

=vruntime is a weighted time measurement

processes removed = Priority weights the calculation of vruntime within a
. . runqueue to give high priority jobs a boost.
Virtual runtime
Most need of CPU Least need of CPU Influences job’s position in rb-tree
TCSS422: Oy ating Syste [Fall 2021] TCSS422: Oy iting Syste [Fall 2021]
‘ October21,2021 School of E:;r:ele’:\gngy:ned’:ch:ﬂlogv, University of Washington - Tacoma L7.45 ‘ October 21, 2021 School of E:;:ele':fngv:n:mrsecn;alagy, University of Washington - Tacoma 1746

45 46

COMPLETELY FAIR SCHEDULER - 6 COMPLETELY FAIR SCHEDULER - 7

= CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

= More information:

= struct sched_entity contains vruntime parameter = Man page: “man sched” : Describes Linux scheduling API
= Describes process execution time in nanoseconds = http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
= Value is not pure runtime, is weighted based on job priority
= Perfect scheduler > = https://www.kernel.org/doc/Documentation/scheduler/sched-
achieve equal vruntime for all processes of same priority design-CFS.txt
= Sleeping jobs: upon return reset vruntime to lowest value in = https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
system

L] i 1
Jobswith frequent short sleep SUEFER II = See paper: The Linux Scheduler - a Decade of Wasted Cores

= Key takeaway: = http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
Identifying the next Job to schedule Is really fast!

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma a7 CEFLR A School of Engineering and Technology, University of Washington - Tacoma 748

47 48

Slides by Wes J. Lloyd L7.8

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

OBJECTIVES - 10/21

= Questions from 10/19
Assignment O - Due Fri Oct 22
C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Quiz 1 and Quiz 2
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
|__" Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ br

TC55422; Operating Systems [Fall 2021]
l DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma 17.50

49 50

CHAPTER 26 -

CONCURRENCY
AN INTRODUCTION

TCSS422: Operating Systems [Fall 2021]
(e 2R School of Engineering and Technology, University of Washington -

THREADS THREADS - 2

= Enables a single process (program) to have multiple “workers”

Process Multithreaded Process * This is parallel programming...

= Supports independent path(s) of execution within a program

Single with shared memory ...
Multiple
Threaded oascs SHARED WY, Thregded
(A Process = Each thread has its own Thread Control Block (TCB)
« = PC, registers, SP, and stack
= Threads share code segment, memory, and heap are shared
©Alfred Park, http://randu.org/tutorials/threads
= What Is an embarrassingly parallel program?
TCSS422: Oy ating Syste [Fall 2021] TCSS422: Oy ting Systems [Fall 2021]

l Octoher2132021 Schoo! of Engineering andtTechnology, Univerityof Washington - Tacoma 751 l October 21, 2021 School of Engineering and Technology, niversiy of Washington - Tacoma 1752

51 52

PROCESS AND THREAD METADATA SHARED ADDRESS SPACE

= Thread Control Block vs. Process Control Block = Every thread has it’'s own stack / PC
OKE "] The cod ent: U
Program Code | mhere mctractons lve Program Code
1K8 " 1K8
ot
Thiead identification Process identification Heap T e e Heap
Thread state Process status 2k8 dynamic data structures 2K8
CPU information: Process state: (it grows downward)
P e Process status word
ogam comtr. iy o
! Main memory
Thvead priority Resoutces i)
Painter to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting stack @
it grows upward)
The stack segment: (free)
15K8 contains local variables 15K8
Stack (1) arguments to routines, Stack (1)
16KB return values, et 16K8 |
A single-Threaded Two threaded
Address Space Address Space
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
l e, School of Engineering and Technology, Universiy of Washington - Tacoma 75 l LT School of Engineering and Technology, Universty of Washington - Tacoma 7

53 54

Slides by Wes J. Lloyd L7.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

THREAD CREATION EXAMPLE

10/21/2021

POSSIBLE ORDERINGS OF EVENTS

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void smythread(void rarg) {
printf("$s\n", (char +) arg);
return NULL;

)

int
main(int arge, char +argv(l) {

pthread_t pl, p2;

int re;

printf("main: begin\n");

thread_create(spl, NULL, mythread,

ead_create(p2, NULL, mythread,
aits for the threads to finish
thread_join(pl, NULL); assert(rc == 0);
rc = pthread_join(p2, NULL); assert(rc == 0);
printf ("main: end\n");
return 0;

assert (rc == 0);
assert (rc == 0);

TCS5422: Operating Systems [Fall 2021]

‘ Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma

17.55

55

POSSIBLE ORDERINGS OF EVENTS - 2

mmem | Tweass | o2

Starts running

‘Prlnts ‘main: begin’
Creates Thread 1

Creates Thread 2
Waits for T1.
Runs
* Prints ‘A"
Returns
» Waits for T2
Runs
‘ Prints ‘B’
Returns
» Prints ‘main: end"

56

POSSIBLE ORDERINGS OF EVENTS - 3

 mtmem | v | wem:

Starts running

Prints ‘main: begin’

Creates Thread 1
Runs
Prints ‘A’
Returns
Creates Thread 2
Runs.
Prints ‘B’
Returns
Waits for T4 Returns immediately
Waits for T2 Returns immediately

Prints ‘main: end’

TCSS422: Operating Systems [Fall 2021]

‘ Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma

17.57

57

COUNTER EXAMPLE

[mmem | vt | o2

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

events in the program matters?

Waits for T
Runs.
Prints ‘A'
Returns
Waits for T2 Immediatelyreturns
Prints ‘main: end"
TC55422: Operating Systems [Fall 2021]
‘ (Octoner21,2021 School of Engineering and Technology, University of Washington - Tacoma 17.58

58

PROCESSES VS. THREADS

= Counter example

= A + B : ordering
= Counter: incrementing global variable by two threads

= |s th nter example embarrassingl; rallel?

= What does the parallel counter program require?

TCS3422: Operating Systems [Fall 2021]

‘ i, 2 School of Engineering and Technology, University of Washington - Tacoma

1759

59

Slides by Wes J. Lloyd

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

e e

Process Process

stack stack stack
i || i N Y |
S| g
= e T ; ; P SR E—,
' e e

-
L L
T || ——

singlohreaded procass mustithroadsd pracess

TC55422: Operating Systems [Fall 2021]
‘ OEEETRELATR School of Engineering and Technology, University of Washington - Tacoma 1760

60

L7.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/21

= Questions from 10/19

= Assignment O - Due Fri Oct 22

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Quiz 1 and Quiz 2

Chapter 9: Proportional Share Schedulers

= Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broad

TC55422; Operating Systems [Fall 2021]
l Ctobena 2028 [School of Engineering and Technology, University of Washington - Tacoma. 1761

61

OBJECTIVES - 10/21

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Quiz 1 and Quiz 2
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
| = Critical sectlon |
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broad

TCS5422: Operating Systems [Fall 2021]
l Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma. 1763

63

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutexs

balance = balance + 1; Critical section

unlock (smutex) ;

= Counter example revisited

l o TCS5422: Operating Systems [Fall 2021] e

School of Engineering and Technology, University of Washington - Tacoma

65

Slides by Wes J. Lloyd

RACE CONDITION

= What is happening with our counter?

= When counter=50,

code: =

= If synchronized, counter will = 52

(after instruction)

10/21/2021

(o3 Threadl Thread2 PC %eax counter

before critical section 00 o 50
mov 0x8043alc, Yeax 105 50 50
add §0x1, seax 108 51 50

TS state
T2's state 00 o 50
mov 0x80¢9alc, teax 105 50 50
weax 108 51 50
0xB04%alc 113 51 51

—smave TTs state
restors T1's state 108 51 50
mov %eax, 0x804%alc 13 51 [s1

TC55422; Operating Systems [Fall 2021]
l DStobes2UR0 28 [School of Engineering and Technology, University of Washington - Tacoma L7:62

62

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical sectlon produce a
race condition.

= Atomlc executlon (all code executed as a unit) must be

ensured in critical sections
= These sections must be mutually exclusive

October 21,2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

64

66

October 21, 2021

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Fall 2021

)]
School of Engineering and Technology, University of Washington -

L7.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/21

= Questions from 10/19
= Assignment O - Due Fri Oct 22
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
Quiz 1 and Quiz 2
Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread APl
thread_create/_loin
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broad

TC55422; Operating Systems [Fall 2021]
‘ Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma. 1767

67

PTHREAD_CREATE - PASS ANY DATA

10/21/2021

THREAD CREATION

= pthread_create

¥include <pthread.h>

pthread create(5 thread,
ad_attr_t* attr,
id* (*atart_routine) (void*),
arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TC55422; Operating Systems [Fall 2021]
‘ DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma L7.68

68

PASSING A SINGLE VALUE

#incluge <pthread.n»

t _myarg t {
ai

} myarg t:

*mythread (v {
myarg rg_t *) arg:
printE(n*, m->a, m->b);

*argv(]) {
rc = pthread_create(ép, NULL, mythread, gargs)s
1
TCS5422: Operating Systems [Fall 2021]
‘ Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma 1769

69

WAITING FOR THREADS TO FINISH

pthread_join(pthread t thread, i **value_ptr}:

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCS5422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma v

71

Slides by Wes J. Lloyd

Using this approach on your Ubuntu VM
How large (in bvtes) can the p

e data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

Ic

pthread create (ip, NULL, my\.h:euc.@l-.'):
pthread_join(p, (4) Em);
12 printf (*returned ¥d\n”, m);

13 H]

TC55422: Operating Systems [Fall 2021]
‘ (Octoner21,2021 School of Engineering and Technology, University of Washington - Tacoma 170

70

struct myarg { . .
incas hat will this code do?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

25235: _’;yirg;"”tp”t' Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;
pthread_¢

By How can this code be fixed?

return 0

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma 772

October 21, 2021

72

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

struct myarg {
int a;
int b;

How about this code?

ADDING CASTS

b
void *worker(void *arg)
struct myarg *input = (struct myarg *) arg; i
printf("a=%d b=%d\n",input->a, input->b); = Casting
input->a = 1; = Suppresses compiler warnings when passing “typed” data

input->b = 2; q PRV
return (void *) &input; where (void) or (void *) is called for

$./pthread_struct

. X X R a=10 b=20 = Example: uncasted capture in pthread_join

int main (int argc, char * argv[]) returned 1 2 pthread_int.c: In function ‘main’:

t th d_t pl: pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
pthreac_t pl; from incompatible pointer type [-wincompatible-pointer-types]

struct myarg args;
struct myarg *ret_args;
args.a = 1

pthread_join(pl, &plval);

args.b 20; .
pthread_create(&pl, NULL, worker, &args); = Example: uncasted return
pthread_join(pl, (void *)&ret_args); In file included from pthread_int.c:3:0:
printf("returned %d %d\n", ret_args->a, ret_args->b); /usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
return 0; is of type ‘int **
extern int pthread_join (pthread_t __th, void **__thread_return);
TCS5422; Operating Systems [Fall 2021]
October 21, 2021 B e LA e - wm ‘ October21, 2021 | sehoo of Engineering and Technology, University of Washington -Tacoma o

73 74

ADDING CASTS - 2 OBJECTIVES - 10/21

= Questions from 10/19

Assignment O - Due Fri Oct 22

C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29
int * p2val; Quiz 1 and Quiz 2

pthread_join(pl, (void *)&plval); Chapter 9: Proportional Share Schedulers
pthread_join(p2, (void *)&p2val); = Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler

= pthread_join

.
int * plval; a
.
.

= return from thread function

int * counterval = malloc(sizeof(int)); = Chapter 26: Concurrency: An Introduction
*counterval = counter; = Introduction
return (void *) counterval; = Race condition

= Critical section
= Chapter 27: Linux Thread API

thread_create/_join
thread_mutex_lock/_unlock/_trylock/_timelock

pth ond wa b a
TC55422; Operating Systems [Fall 2021] ting Systems [Fall 2021)
‘ Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma 1775 (Octoner21,2021 School of Engineering and Technology, University of Washington - Tacoma

75 76

LOCKS

= pthread_mutex_t data type = Ensure critical sections are executed atomically-as a unit

= /usr/include/bits/pthread_types.h = Provides implementation of “Mutual Excluslon”

// Global Address Space
static volatile int counter = 0; = API

pthread_mutex_lock (pthread_mutex_t *mutex);
nt pthread mutex_unlock (pthread mutsx t *mutex):

void *worker(void *arg)
{

int i; Example w/o initialization & error checking
for (i=0;1<10000000;i++) {

thread mutex_t lock;
d_mutex_lock (slock) ;

assert(rc==0);
counter = counter + 1;

pthread mutex unlock(slock) ;

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma 77 OEEETRELATR School of Engineering and Technology, University of Washington - Tacoma 177

¥
return NULL;

77 78

Slides by Wes J. Lloyd L7.13

TCSS 422 A — Fall 2021

10/21/2021
School of Engineering and Technology

LOCK INITIALIZATION LOCKS - 3

= Assigning the constant = Error checking wrapper

| pthread mutex_t lock = PTHREAD MUTEX INITIALIZER; ‘

1d Pthread mutex lock(pthread mutex t *mutex) (
= API call: d_mutex_lock (mutex) ;

rc =

ssert (rc -
i thread mutex init (slock, NULL); assert (ro

- - }
assert (rc =)i

= |nitializes mutex with attributes specified by 2" argument = What if lock can’t be obtained?

. int pthread mutex_trylock(pthread mutex t *mutex);
= |f NULL, then default attributes are used pthread mutex_timelock (pthread mutex t *mutex,

struct timespec *abs_timeout);

= Upon initialization, the mutex is initialized and unlocked

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma L7.79 DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma 17.80

79 80

OBJECTIVES - 10/21

CONDITIONS AND SIGNALS

= Questions from 10/19

Ao : ugi P
= Assignment O - Due Fri Oct 22 - gg:‘vs!eté?]nﬂ:f;:-jbsles support “signallng
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

® Quiz 1 and Quiz 2 . int pthread cond_wait (pthread cond t *cond,

= Chapter 9: Proportional Share Schedulers

pthread mutex t *mutex):
pthread_cond_signal (pthread cond_t *cond):

= Lottery scheduler
= Ticket mechanisms

= pthread_cont_t datatype

= Stride scheduler

= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction = pthread_cond_wait()

= Introduction = Puts thread to “sleep” (waits) (THREAD is BLOCKED)

= Race condition = Threads added to >FIFQ queue<, lock is released

* Critical section = Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
= Chapter 27: Linux Thread API = When signal occurs, interrupt fires, wakes up first thread,

= pthread_create/_join

(THREAD is RUNNING), lock is provided to thread
thread_mutex_lock

October 21, 2021

 Operating Systes [Fa TC55422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma. L7.81 ‘ October 21,2021 School of Engineering and Technology, University of Washington - Tacoma 1782

81 82

CONDITIONS AND SIGNALS -2 CONDITIONS AND SIGNALS -3

int pthread_cond_signal(pthread_cond_t * cond); = Wait example:
int pthread_cond_broadcast(pthread_cond_t * cond);

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

= pthread_cond_signal ()

pthread mutex_lock (&1lock) ;
= Called to send a “signal” to wake-up first thread in FIFQ “walt” ‘ while (initialized == 0)
. . q pthread_cond_wait (&cond, &lock);
The goal is to unblock a thread to respond to the signal // Perform work that requires lock
a=a+b;
= pthread_cond_broadcast() pthread_mutex_unlock (6lock) ;
= Unblocks all threads in FIFO “walt” queue, currently blocked on the

specified condition variable = wait puts thread to sleep, releases lock
= Broadcast is used when all threads should wake-up for the signal

= when awoken, lock reacquired (but then released bv this code)
. . . (T q State variable set,
= Which thread is unblocked first? = When initialized, another thread signals Enables other thread(s)
= Determined by OS scheduler (based on priority) pthrsad matex lock (slogk) ; to proceed above.
= Thread(s) awoken based on placement order in FIFQO walt queue “:;““j‘“dl d T -)
h . pthread _cond_signal (sinit);
= When awoken threads acquire lock as in pthread_mutex_Tock () pthread matex unlock (Elock) ;
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma 8 ‘ OEEETRELATR School of Engineering and Technology, University of Washington - Tacoma 1784

83 84

Slides by Wes J. Lloyd L7.14

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

thread mutex lock (slock) ;
Hne (initialized == 0)
pthread cond wait(&cond, &lock) ;
/7 Perform work that requires lock

a=a+b;
pthread_mutex_unlock (slock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TC55422; Operating Systems [Fall 2021]
l Ctobena 2028 School of Engineering and Technology, University of Washington - Tacoma L85

85

SAMPLE MAKEFILE

Cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cc) $(CFLAGS) $A -o $@

Tean:
$(RM) -f $(binaries) *.o
= Example builds multiple single file programs
= All target

= pthread_mult
= Example if multiple source files should produce a single executable

= clean target

TCS5422: Operating Systems [Fall 2021]
l Octoher2132021 School of Engineering and Technology, University of Washington - Tacoma 1787

87

Slides by Wes J. Lloyd

10/21/2021

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TC55422; Operating Systems [Fall 2021]
l DStobes2UR0 28 School of Engineering and Technology, University of Washington - Tacoma L7.85

86

QUESTIONS

L7.15

