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TCSS 422: OPERATING SYSTEMS

Tuesdays: 

▪4:00 to 4:30 pm  - CP 229

▪7:15 to 7:45+ pm – ONLINE via Zoom

Thursdays

▪4:15 to 4:45 pm – ONLINE via Zoom

▪7:15 to 7:45+ pm – ONLINE via Zoom

Or email for appointment

Zoom link sent via Canvas Announcements

> Of f ice  Hour s set  based on Student Demographics sur vey feedback
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OFFICE HOURS – FALL 2021

 15% off textbook code: SPOOKY15 (through Friday Oct 22 )

 https://www.lulu.com/shop/remzi -arpaci-dusseau-and-andrea-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-

23779877.html?page=1&pageSize=4
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TEXT BOOK COUPON

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (21 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.48  ( - previous 6.62) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.48 ( - previous 5.54)
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MATERIAL / PACE

?
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FEEDBACK

 Bonus session on Zoom:

Wed Oct 27 starting at 6:30pm

▪ Approximately ~1 hour

 Will solve a series of example scheduling problems

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ

 Video will be recorded and posted

 Midterm in class on Thursday November 4th
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BONUS SESSION –

EXAMPLE SCHEDULER PROBLEMS

 Quest ions from 10/19

 Assignment 0 - Due Fr i Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 Due Friday Oct 22 @ 11:59pm

 Grace period: submission ok til Sun Oct 24 @ 11:59 AM

 Late submissions: ok til Tuesday Oct 26 @ 11:59pm
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ASSIGNMENT 0 - DUE FRI OCT 22

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Po inters, S trings, Exec in C - Due Fr i Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

7 8

9 10

11 12
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency : An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L7.13

OBJECTIVES – 10/21

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Tuesday November 2nd at 11:59pm

 Grace period til Thursday Nov 4 th at 11:59 ** AM **

 Late submissions til Saturday Nov 6 th at 11:59pm

 Link:

 http://faculty.washington.edu/wlloyd/courses/tcss422/

TCSS422_f2021_quiz_1.pdf 
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QUIZ 1

 Canvas Quiz – CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Thursday November 4 th at 11:59pm

 Grace period til Saturday Nov 6 th at 11:59 ** AM **

 Late submissions til Monday Nov 8 th at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1484473/quizzes/1555405
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QUIZ 2

 Assignment #1

▪ To be posted for next class, Tuesday Oct 26

 Midterm Exam

▪ Thursday November 4 th

▪ In Class
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COMING SOON...

CHAPTER 9 -

PROPORTIONAL SHARE 

SCHEDULER
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1484473/quizzes/1555405
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 Also called fair -share scheduler

or lottery scheduler

▪ Guarantees each job receives some percentage of CPU 

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

October 21, 2021
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

October 21, 2021
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LOTTERY SCHEDULER

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

October 21, 2021
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TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of 

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

October 21, 2021
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TICKET MECHANISMS - 2

19 20

21 22

23 24
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 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

October 21, 2021
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

October 21, 2021
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LOTTERY FAIRNESS

 With two jobs 

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as 

desired

 How should the OS automatically distribute tickets upon 

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

October 21, 2021
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LOTTERY SCHEDULING CHALLENGES

WE WILL RETURN AT 

2:40PM

October 21, 2021
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

October 21, 2021
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OBJECTIVES – 10/21

25 26

27 28

29 30
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Addresses statistical probability issues with 

lottery scheduling

 Instead of guessing a random number to select a 

job, simply count…

October 21, 2021
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STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should 

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of 

tickets  (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

October 21, 2021
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 

the scheduler passes on to the next job…

October 21, 2021
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STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

October 21, 2021
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STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

October 21, 2021
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

October 21, 2021
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …

31 32

33 34

35 36
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 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their

priority represented as their share of  t ickets…

 Tickets are analogous to job pr iority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent 

in the CPU scheduler!

 Study highlights 

importance for 

high performance 

OS kernels and

CPU schedulers !

S e e :  h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class) 

receive exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class 

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches 

(e.g. 3 ms)

October 21, 2021
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

October 21, 2021
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COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime)  to track how long 

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

October 21, 2021
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COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000  

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

37 38

39 40

41 42

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
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 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with 

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a 

set  of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f  (proc in runqueue < sched_latency_ns/sched_min_granularity )

or

sched_min_granularity * number of processes in runqueue

R e f :  h t t p s : / / w w w . sy s t u t o r i a l s . c om / s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h e d _ l a t e nc y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /
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COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

increased context switching → more overhead

better near -term fairness
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CFS TRADEOFF
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COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest 

vruntime (approx execution time)

 Walking tree to find left 

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed 

processes removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a 

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree
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CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is 
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in 
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf
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COMPLETELY FAIR SCHEDULER - 7

43 44

45 46

47 48

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
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CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

October 21, 2021
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is  an embarrassingly parallel program?
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THREADS - 2

 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is  the counter example embarrassingly parallel?

 What does the parallel counter program require?
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COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads
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PROCESSES VS. THREADS
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency : An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 What is happening with our counter? 

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52
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RACE CONDITION

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency : An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 Code that accesses a shared variable must not be 

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 

race condition .

 Atomic execution (all code executed as a unit )  must be 

ensured in critical sections

▪ These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS

CHAPTER 27 -

LINUX

THREAD API
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 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency : An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 pthread_create

 thread: thread struct

 attr :  stack size, scheduling priority…  ( optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine ( optional)
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value

type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

WAITING FOR THREADS TO FINISH
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);
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ADDING CASTS

 pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 10/21

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock
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LOCKS - 2
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 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If  NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked
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LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if  lock is unavailable

 timelock – tr ies to obtain a lock for a specified duration

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.80

LOCKS - 3

 Quest ions from 10/19

 Assignment 0 - Due Fri Oct 22

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Oct 29

 Quiz 1 and Quiz 2

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency : An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

October 21, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L7.81

OBJECTIVES – 10/21

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits)    (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released 

▪ Waits (listens) for a “signal”   (NON-BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread
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CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.
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pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to 

execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread
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PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS
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