
TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.1Slides by Wes J. Lloyd

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Multi-level Feedback
Queue (MLFQ) Scheduler –

Proportional Share
Schedulers

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Tuesdays:

▪4:00 to 4:30 pm - CP 229

▪7:15 to 7:45+ pm – ONLINE via Zoom

Thursdays

▪4:15 to 4:45 pm – ONLINE via Zoom

▪7:15 to 7:45+ pm – ONLINE via Zoom

Or email for appointment

Zoom link sent via Canvas Announcements

> Of f ice Hours set based on Student Demographics sur vey feedback

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OFFICE HOURS – FALL 2021

1

2

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.2Slides by Wes J. Lloyd

 15% off textbook code: SPOOKY15 (through Friday Oct 22)

 https://www.lulu.com/shop/remzi -arpaci-dusseau-and-andrea-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-

23779877.html?page=1&pageSize=4

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

TEXT BOOK COUPON

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.4

OBJECTIVES – 10/19

3

4

https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

October 19, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

ONLINE DAILY FEEDBACK SURVEY

October 19, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.6

5

6

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.62 (- previous 6.73)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.54 (- previous 5.59)

October 19, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

MATERIAL / PACE

What happens when you manually decide for a

process to have a higher priority than another?

How does this effect the scheduler?

▪ In Linux, users cannot directly assign processes priority

values

▪ Linux offers the nice command which allows users to

suggest a process priority to the kernel

▪ By default, only superuser can increase the priority of a

process. All other users can only decrease priority

▪ User assignable nice values range from -20 (most

favorable to the process) to 19 (least favorable to the

process), default is 0

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.8

FEEDBACK

7

8

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.5Slides by Wes J. Lloyd

 (cont’d) What happens when you manually decide for a
process to have a higher priority than another? How does
this effect the scheduler?

▪ If 2 identical CPU-bound processes run simultaneously on
a single-CPU Linux system, each processes share of the
CPU time will be proportional to (20 − p), where p is the
process priority.

▪ A process run with nice +15, will receive 25% of the
original CPU time for a normal-priority process:
(20 − 15)/(20 − 0) = 0.25 → 25%

▪ For 2 identical processes, what is the lowest % timeshare
possible when adjusting process priority with nice?

▪ (20 – 19) / (20 – 0)

▪ (20 – 19) / (20 – 0) = 1 / 20 = .05 → 5%

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

FEEDBACK - 2

 (cont’d) What happens when you manually decide for a

process to have a higher priority than another? How does

this effect the scheduler?

 Process priority, and the nice command are explained

further when we discuss the Linux Completely Fair

Scheduler at the end of Chapter 9

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

FEEDBACK - 3

9

10

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.6Slides by Wes J. Lloyd

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

OBJECTIVES – 10/19

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

OBJECTIVES – 10/19

11

12

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.7Slides by Wes J. Lloyd

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

OBJECTIVES – 10/19

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

OBJECTIVES – 10/19

13

14

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.8Slides by Wes J. Lloyd

CHAPTER 8 –

MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.15

Objectives:

▪ Improve turnaround time:

Run shorter jobs first

▪Minimize response time:

Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

MULTI-LEVEL FEEDBACK QUEUE

15

16

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.9Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

▪ Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

17

18

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.10Slides by Wes J. Lloyd

 Three-queue scheduler, time slice=10ms

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms,

 B run_time =20ms, Barrival_time =100ms

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

19

20

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.11Slides by Wes J. Lloyd

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.22

OBJECTIVES – 10/19

21

22

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.12Slides by Wes J. Lloyd

Starvation

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

MLFQ: ISSUES

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

OBJECTIVES – 10/19

23

24

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.13Slides by Wes J. Lloyd

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

RESPONDING TO BEHAVIOR CHANGE

Starvation

25

26

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.14Slides by Wes J. Lloyd

 With priority boost

▪ Prevents starvation

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.28

KEY TO UNDERSTANDING MLFQ – PB

27

28

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.15Slides by Wes J. Lloyd

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

PREVENTING GAMING

29

30

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.16Slides by Wes J. Lloyd

WE WILL RETURN AT

2:45PM

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.31

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MLFQ: TUNING

31

32

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.17Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MLFQ RULE SUMMARY

33

34

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.18Slides by Wes J. Lloyd

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

OBJECTIVES – 10/19

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.36

35

36

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.19Slides by Wes J. Lloyd

 Question:

 Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long -running
(and potentially starving) job gets at least 5% of the CPU?

.

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long -running
(and potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

EXAMPLE

37

38

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.20Slides by Wes J. Lloyd

 Questions from 10/14

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

OBJECTIVES – 10/19

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.40

39

40

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.21Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

OBJECTIVES – 10/19

 Also called fair-share scheduler

or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

PROPORTIONAL SHARE SCHEDULER

41

42

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.22Slides by Wes J. Lloyd

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

LOTTERY SCHEDULER

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

43

44

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.23Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

OBJECTIVES – 10/19

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

TICKET MECHANISMS

45

46

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.24Slides by Wes J. Lloyd

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

LOTTERY SCHEDULING

Scheduled job:

47

48

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.25Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of flips!

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

49

50

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.26Slides by Wes J. Lloyd

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

LOTTERY SCHEDULING CHALLENGES

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

OBJECTIVES – 10/19

51

52

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.27Slides by Wes J. Lloyd

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

STRIDE SCHEDULER - 2

53

54

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.28Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

STRIDE SCHEDULER - EXAMPLE

55

56

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.29Slides by Wes J. Lloyd

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

57

58

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.30Slides by Wes J. Lloyd

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

OBJECTIVES – 10/19

59

60

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.31Slides by Wes J. Lloyd

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

61

62

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.32Slides by Wes J. Lloyd

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

63

64

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.33Slides by Wes J. Lloyd

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

CFS TRADEOFF

65

66

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.34Slides by Wes J. Lloyd

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed

processes removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

CFS: JOB PRIORITY

67

68

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.35Slides by Wes J. Lloyd

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

October 19, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

COMPLETELY FAIR SCHEDULER - 7

69

70

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/21/2021

L6.36Slides by Wes J. Lloyd

QUESTIONS

71

