TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback
Queue (MLFQ) Scheduler -
Proportional Share
Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

October:19,2021 School of Engineering and Technology, University of Washington jll Tacoma

OFFICE HOURS - FALL 2021

®Tuesdays:
=4:00 to 4:30 pm -CP 229

=7:15 to 7:45+ pm - ONLINE via Zoom

=Thursdays
=4:15 to 4:45 pm - ONLINE via Zoom

=7:15 to 7:45+ pm - ONLINE via Zoom
=0r email for appointment
mZoom link sent via Canvas Announcements

> Office Hours set based on Student Demographics survey feedback

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L62

| October 19, 2021

Slides by Wes J. Lloyd L6.1



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

TEXT BOOK COUPON

= 15% off textbook code: SPOOKY15 (through Friday Oct 22)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

October 19, 2021 TCSS422: Operating Systems [Fall 2021] | L6.3 |

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/19

| = Questions from 10/14 |
® Assignment O
® C Tutorial - Pointers, Strings, Exec in C
B Quiz 1 - Active Reading Chapter 9

® Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

. TCSS422: Operating Systems [Fall 2021] | Lo |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L6.2


https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

10/21/2021

TCSS 422 A - Fall 2021
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p
=— TCSS 422 A > Assignments

Spring 2021 X
~ rchn ror A 2N |
Home

Announcements
* Upcoming Assignments

Zoom
Sllabus TCSS 422 - Online Dai
P - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Fall 2021]
October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma L6:5
5
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[ | Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Fall 2021]
OctobeniDy202i School of Engineering and Technology, University of Washington - Tacoma L6.6
6

Slides by Wes J. Lloyd L6.3



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (26 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.62 ({ - previous 6.73)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.54 ({ - previous 5.59)

October 19, 2021 TCSS422: Computer Operating Systems [Fall 2021] | 16.7 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK

= What happens when you manually decide for a
process to have a higher priority than another?
How does this effect the scheduler?

= In Linux, users cannot directly assign processes priority
values

= Linux offers the nice command which allows users to
suggest a process priority to the kernel

= By default, only superuser can increase the priority of a
process. All other users can only decrease priority

= User assignable nice values range from -20 (most
favorable to the process) to 19 (least favorable to the
process), default is O

TCSS422: Operating Systems [Fall 2021] 6.8
School of Engineering and Technology, University of Washington - Tacoma :

October 19, 2021

Slides by Wes J. Lloyd L6.4



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

FEEDBACK - 2

= (cont’d) What happens when you manually decide for a
process to have a higher priority than another? How does
this effect the scheduler?

= |f 2 identical CPU-bound processes run simultaneously on
a single-CPU Linux system, each processes share of the
CPU time will be proportional to (20 — p), where p is the
process priority.

= A process run with nice +15, will receive 25% of the
original CPU time for a normal-priority process:
(20 - 15)/(20 - 0) = 0.25 > 25%

= For 2 identical processes, what is the lowest % timeshare
possible when adjusting process priority with nice?

=(20 - 19) / (20 - 0)

"(20-19)/(20-0)=1/20=.05>> 5%

TCSS422: Operating Systems [Fall 2021] 16.9
School of Engineering and Technology, University of Washington - Tacoma :

October 19, 2021

FEEDBACK - 3

= (cont’d) What happens when you manually decide for a
process to have a higher priority than another? How does
this effect the scheduler?

= Process priority, and the nice command are explained
further when we discuss the Linux Completely Fair
Scheduler at the end of Chapter 9

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6.10

October 19, 2021

10

Slides by Wes J. Lloyd L6.5



TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

® Questions from 10/14

| = Assignment 0 |
® C Tutorial - Pointers, Strings, Exec in C
® Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

16.11

11

OBJECTIVES - 10/19

® Questions from 10/14
® Assignment O

| = C Tutorial - Pointers, Strings, Exec in C |
B Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

16.12

12

Slides by Wes J. Lloyd

10/21/2021

L6.6



TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

® Questions from 10/14

® Assignment O

® C Tutorial - Pointers, Strings, Exec in C
= Quiz 1 - Active Reading Chapter 9 |

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

16.13

13

OBJECTIVES - 10/19

® Questions from 10/14

® Assignment O

® C Tutorial - Pointers, Strings, Exec in C
B Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
| = MLFQ Scheduler |
= Job Starvation
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L6.14

14

Slides by Wes J. Lloyd

10/21/2021

L6.7



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

CHAPTER 8 -
MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Fall 2021]

Octcbagioenad School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

®mObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

®m Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

October 19, 2021

16

Slides by Wes J. Lloyd L6.8



TCSS 422 A - Fall 2021
School of Engineering and Technology

Round-Robin
within a Queue

= Multiple job queues

= Adjust job priority based on [High Priority] Q8 _’®_’
observed behavior

Q7
= [nteractive Jobs Q6
= Frequent 1/0 > keep priority high Qs
= Interactive jobs require fast
response time (GUI/UI) Q4 —>©
= Batch Jobs Q3
= Require long periods of CPU Q2
utilization
= Keep priority low [Low Priority] Q1 —>@

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.17

17

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced ()

= Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

16.18

October 19, 2021

18

Slides by Wes J. Lloyd

10/21/2021

L6.9



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MLFQ: LONG RUNNING JOB

® Three-queue scheduler, time slice=10ms

Priority

0 50 100 150 200

Long-running Job Over Time (msec)

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L619

October 19, 2021

19

MLFQ: BATCH AND INTERACTIVE JOBS

=A
=B

=200ms,
=100ms

arrival_time =0ms, A
=20ms, B

run_time

run_time arrival_time

Priority Q2

A

Q1 B.

QO

0 50 100 150 200

Scheduling multiple jobs (ms)

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1620

October 19, 2021

20

Slides by Wes J. Lloyd L6.10



TCSS 422 A - Fall 2021
School of Engineering and Technology

MLFQ: BATCH AND INTERACTIVE - 2

® Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

<
\
N
N
N
N
Q1 B:
’ IIIIIIIIIIIIII
NS EREEEEE

A Mixed I/O-intensive and CPU-intensive Workload (msec)

Q2

A

N

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

16.21

21

OBJECTIVES - 10/19

® Questions from 10/14
® Assignment O
® C Tutorial - Pointers, Strings, Exec in C

B Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
| =Job Starvation |
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6-22

October 19, 2021

22

Slides by Wes J. Lloyd

10/21/2021

L6.11



TCSS 422 A - Fall 2021
School of Engineering and Technology

MLFQ: ISSUES

= Starvation
[High Priority] Q8 _,®_>_>@_> @_>®_>®
Q7
Q6
Qs
Q4
Q3
Q

[Low Priority] Q1 — > @_, @ CPU bound batch job(s)

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

16.23

23

OBJECTIVES - 10/19

® Questions from 10/14
® Assignment O
® C Tutorial - Pointers, Strings, Exec in C

B Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
|__= Gaming the Scheduler |
= Examples
® Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6-24

| October 19, 2021

24

Slides by Wes J. Lloyd

10/21/2021

L6.12



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MLFQ: ISSUES - 2

® Gaming the scheduler
= |[ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change

= CPU/batch process becomes an interactive process
i et 05— (3)— (5) — (€)— () — () —(F)
Q7
Q6
Q5
Q4
Qa3
Q
Priority becomes stuck » fLow Priority] QL — (G)——> (1)  CPUbound batch job(s)

TCSS422: Operating Systems [Fall 2021]

16.2!
School of Engineering and Technology, University of Washington - Tacoma 6.25

October 19, 2021

25

RESPONDING TO BEHAVIOR CHANGE

@ LLEE e

QO

o
®

» B )

I— Starvation

o
«
=]
=
o
=]
I
w
=]
N
=]
=]

Without Priority Boost  a. I B: C:%

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1626

October 19, 2021

26

Slides by Wes J. Lloyd L6.13



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

200

With Priority Boost A:I B: C:%

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

16.27

27

KEY TO UNDERSTANDING MLFQ - PB

= Without priority boost:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

16.28

October 19, 2021

28

Slides by Wes J. Lloyd L6.14



TCSS 422 A - Fall 2021
School of Engineering and Technology

STARVATION EXAMPLE

= Consider 3 queues:

® Q2 - HIGH PRIORITY - Time Quantum 10ms

® Q1 - MEDIUM PRIORITY - Time Quantum 20 ms
= Q0 - LOW PRIORITY - Time Quantum 40 ms

= Job A: 200ms no I/0 o2 . %;gﬁgﬂaﬂaﬁg@g

= Job B: 5ms then I/0
= Job C: 5ms then I/0 Q1

= Q2 fills up,
starves Q1 & QO Qo

= A makes no progress
Without Priority Boost A, I B: C'%

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.29 |

29

PREVENTING GAMING

= I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

o2 02 M

Q1 o1 E

Qo Qo0 3
AARARARNRTARANNTA T |
] 50 50 200 0

100 1

Without(Left) and With(Right) Gaming Tolerance

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

| October 19, 2021 16.30 |

30

Slides by Wes J. Lloyd

10/21/2021

L6.15



TCSS 422 A - Fall 2021
School of Engineering and Technology

WE WILL RETURN AT
2:45PM

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

MLFQ: TUNING

® Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?

= What about different time slices to different queues?

N
Q2 I
A §
e
-m-
0 50 100 150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

School of Engineering and Technology, University of Washington -

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L6.32

32

Slides by Wes J. Lloyd

10/21/2021

L6.16



TCSS 422 A - Fall 2021
School of Engineering and Technology

PRACTICAL EXAMPLE

® Oracle Solaris MLFQ implementation

= 60 Queues >
w/ slowly increasing time slice (high to low priority)

= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.33

33

MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

® Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:34

October 19, 2021

34

Slides by Wes J. Lloyd

10/21/2021

L6.17



TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

® Questions from 10/14
® Assignment O
® C Tutorial - Pointers, Strings, Exec in C

® Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
I = Examples l
= Chapter 9: Proportional Share Schedulers

TCSS422: Operating Systems [Fall 2021]

| October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.35

35

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order.

Job  Arrival Time Job Length Fimng shee 13 JOB +ime_
A T=0

B T=0 16 ?\331;%1\&‘2—‘1\ BCF"ML 6/5
c T=0 % ngﬁ\o q\%.,]

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

PR (45 F8 P8

MED |

4

LOW | 88 B
36

Slides by Wes J. Lloyd

10/21/2021

L6.18



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

EXAMPLE

® Question:

= Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

@A Jocle ...

& 05 PB-1p

B

10
¢ PR - 10 _ 200 ns
¥05
TCSS422: Operating Systems [Fall 2021]
October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma 16.37 |
37

EXAMPLE

= Question:

= Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

® Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs =1 ms ea
= n jobs always uses full time quantum (10 ms)
= Batch jobs starts, runs for full quantum of 10ms
= All other jobs run and context switch totaling the quantum per cycle
= If 10ms is 5% of the CPU, when must the priority boost be ???
= ANSWER - Priority boost should occur every 200ms

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1638

October 19, 2021

38

Slides by Wes J. Lloyd L6.19



TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

® Questions from 10/14
® Assignment O
® C Tutorial - Pointers, Strings, Exec in C

® Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
| = Chapter 9: Proportional Share Schedulers |

TCSS422: Operating Systems [Fall 2021]

| October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.39

39

CHAPTER 9 -

PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Fall 2021]

2ciokeipiita0 2 School of Engineering and Technology, University of Washington -

40

Slides by Wes J. Lloyd

10/21/2021

L6.20



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

OBJECTIVES - 10/19

= Chapter 9: Proportional Share Schedulers
I = Lottery scheduler I
= Ticket mechanisms

= Stride scheduler
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Fall 2021]

L6.41
School of Engineering and Technology, University of Washington - Tacoma 6

October 19, 2021

41

PROPORTIONAL SHARE SCHEDULER

® Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma Le42

October 19, 2021

42

Slides by Wes J. Lloyd L6.21



TCSS 422 A - Fall 2021
School of Engineering and Technology

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.43

43

LOTTERY SCHEDULER IMPLEMENTATION

head
1 counter: u t k if we’ve found the ne et
2 int counter =
3
4 inn a
5 get a va en 0 and th ta
6 int winner = getrandom(0, totaltickets);
7
8 current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 loop until the sum of ticket values is > the winne
12 hile (current) {
13 counter = counter + current->tickets;
14 f (counter > winner)
15 break; found the winne
16 current = current->next;
17 }
18 ’current’ is the winner: schedule it...

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo44

October 19, 2021

44

Slides by Wes J. Lloyd

10/21/2021

L6.22



TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
I = Ticket mechanisms I
= Stride scheduler
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.45

45

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to A1 > 50 (global currency)
= 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B's currency) to B1 > 100 (global currency)

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.46

46

Slides by Wes J. Lloyd

10/21/2021

L6.23



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

TICKET MECHANISMS - 2

® Ticket transfer
= Temporarily hand off tickets to another process

® Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Fall 2021]

L6.47
School of Engineering and Technology, University of Washington - Tacoma 6

October 19, 2021

47

LOTTERY SCHEDULING

® Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A A B A B A

= But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo48

October 19, 2021

48

Slides by Wes J. Lloyd L6.24



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COIN FLIPPING

m Equality of distribution (fairness) requires a lot of flips!

100

90 ]
80
70
60

All heads

50 it
40

Similarly,

Lottery scheduling requires lots of “rounds” to achieve fairness.

il

Increasing number of coin tosses

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.49

49

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

1,0 e emr e
0.8
0.6

0.4+

Unfairness (Average)

0.24

0.0 T T 1
1 10 100 1000

Job Length

When the job length is not very long,

average unfairness can be

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:50

October 19, 2021

50

Slides by Wes J. Lloyd L6.25



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

LOTTERY SCHEDULING CHALLENGES

® What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

® How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.51

51

OBJECTIVES - 10/19

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
| =Stride scheduler |
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:52

October 19, 2021

52

Slides by Wes J. Lloyd L6.26



TCSS 422 A - Fall 2021
School of Engineering and Technology

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

® |nstead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.53

53

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A qe = 10000/100 = 100 stride
= Job B has 50 tickets 2 B4 = 10000/50 = 200 stride
= Job C has 250 tickets - C,4. = 10000/250 = 40 stride

® Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma Le:54

October 19, 2021

54

Slides by Wes J. Lloyd

10/21/2021

L6.27



TCSS 422 A - Fall 2021
School of Engineering and Technology

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.55

55

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

October 19, 2021

56

Slides by Wes J. Lloyd

10/21/2021

L6.28



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
m Set A’s pass value to A’s stride = 100

. Tickets
[ ] > JILARELS
Increment counter until > 100 C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(E) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A « Initial job selection
100 0 0 is random. All @ 0
100 200 0 C
100 200 40 c « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
October 19, 2021 TCSS422: Operating Systems [Fall 2021]

L6.57

School of Engineering and Technology, University of Washington - Tacoma

57

STRIDE SCHEDULER EXAMPLE - 3

m We set A’s counter (pass value) to A’s stride = 100
m Next scheduling decision between B (pass=0) and C (pass=0)

n
Randomly choose B Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(E) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C « C has the most tickets
100 200 80 C and is selected to run
100 200 120 A more often ...
200 200 120 C
200 200 160 C
200 200 200
October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:58

58

Slides by Wes J. Lloyd L6.29



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
® Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority € =250
A =100
Pass(A) Pass(2) Pass(C) Who Runs? B =50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 C
100 200 40 c
100 200 80 C
100 200 120 A
200 200 120 c
200 200 160 C
200 200 200

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.59

59

OBJECTIVES - 10/19

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
I = Linux Completely Fair Scheduler I

October 19, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L6:60

60

Slides by Wes J. Lloyd L6.30



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

Monitored 20,000 servers over 3 years
Found 20% of CPU time spent in the Linux kernel

5% of CPU time spent &
in the CPU scheduler! 5

8 25
= Study highlights g .
importance for <
high performance 3 kernel/sched
0S kernels and o

CPU schedulers !

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
See: https://dl.acm.org/dol/pdi/10.1145/2749469.2750392

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

October 19, 2021

L6.61

61

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® | oosely based on the stride scheduler

® CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

® Each scheduling class has a runqueue
= Groups process of same class
= |n class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g. 3 ms)

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.62

62

Slides by Wes J. Lloyd L6.31


https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

m Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
" #class
ps —-elfc

" jpriority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.63

63

COMPLETELY FAIR SCHEDULER - 3

® Linux 2 2.6.23: Completely Fair Scheduler (CFS)
B Linux < 2.6.23: O(1) scheduler

® Linux maintains simple counter (vruntime) to track how long
each thread/process has run

® CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched latency ns
kernel.sched latency ns = 24000000
$ sudo sysctl kernel.sched min_granularity ns
kernel.sched min granularity ns = 3000000
$ sudo sysctl kernel.sched wakeup granularity ns
kernel.sched wakeup granularity ns = 4000000

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

October 19, 2021

L6.64

64

Slides by Wes J. Lloyd L6.32



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 4

" Sched min_granularity ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= |f system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup granularity ns
(4ms)
® Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ ns/sched_min_granularity)
or
sched min_granularity * number of processes in runqueue

Ref: https://www.systutorlals.com/sched_mIn_granularlty_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.65 |

65

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.66

66

Slides by Wes J. Lloyd L6.33


https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER -5

® Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
m | eftmost node has lowest
vruntime (approx execution time)
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
® Completed
processes removed

virtual runtime

Nodes represent

sched_entity(s)

indexad by their
wvirtual runtime

ME] RO EQ [

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Fall 2021]

L6.67
School of Engineering and Technology, University of Washington - Tacoma 66

October 19, 2021

67

CFS: JOB PRIORITY

® Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
= Top shows nice values

= Process command (hice & priority)E
Ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma Lo.68

October 19, 2021

68

Slides by Wes J. Lloyd L6.34



TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

® CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

m Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

L6.69

69

COMPLETELY FAIR SCHEDULER - 7

® More information:

= Man page: “man sched” : Describes Linux scheduling API
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_ Fair_Scheduler

m See paper: The Linux Scheduler - a Decade of Wasted Cores
" http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

October 19, 2021

70

Slides by Wes J. Lloyd L6.35


http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

QUESTIONS

71

Slides by Wes J. Lloyd L6.36



