TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback
Queue (MLFQ) Scheduler -
Proportional Share
Schedulers

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCS5422: Operating Systems [Fall 2021]
Ceicbey 2024 School of Engineering and Technology, University of Washington

TEXT BOOK COUPON

= 15% off textbook code: SPOOKY15 (through Friday Oct 22)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.htmlI?page=1&pageSize=4

TC55422; Operating Systems [Fall 20211
‘ Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma. 63

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021

Home
Announcements
Zoom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nicruccinne An.r .
TCSS422: Computer Operating Systems [Fall 2021]
‘ CERHELZTE School of Engineering and Technology, University of Washington -Tacoma 18

Slides by Wes J. Lloyd

10/21/2021

OFFICE HOURS - FALL 2021

=Tuesdays:
=4:00 to 4:30 pm - CP 229
=7:15 to 7:45+ pm - ONLINE via Zoom
=Thursdays
=4:15 to 4:45 pm - ONLINE via Zoom
=7:15 to 7:45+ pm - ONLINE via Zoom
=0r email for appointment
mZoom link sent via Canvas Announcements

> Office Hours set based on Student Demographics survey feedback

TC55422; Operating Systems [Fall 2021]
‘ Octobee D028 School of Engineering and Technology, University of Washington - Tacoma 62

OBJECTIVES - 10/19

|= Questlons from 10/14 |

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C
= Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples

= Chapter 9: Proportional Share Schedulers

TC55422: Operating Systems [Fall 2021]
(Octoher 19,2021 School of Engineering and Technology, University of Washington - Tacoma o4

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

12 3 4 s & 7 8 3 1
TCSS422: Computer Operating Systems [Fall 2021]
Sctbepionaual School of Engineering and Technology, University of Washington - Tacoma L66

L6.1

https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MATERIAL / PACE FEEDBACK

= What happens when you manually decide for a

= Please classify your perspective on material covered in today’s

class (26 respondents): process to have a higher priority than another?
= 1-mostly review, 5-equal new/review, 10-mostly new How does this effect the scheduler?
= Average - 6,62 ({ - previous 6,73) = In Linux, users cannot directly assign processes priority
values

: Z!:::: ?_;Z::;:tceigt;o;ayys Clase: = Linux offers the nice command which allows users to
- e Ye G ¢_’ e EED suggest a process priority to the kernel
: = By default, only superuser can increase the priority of a
process. All other users can only decrease priority
= User assignable nice values range from -20 (most
favorable to the process) to 19 (least favorable to the
process), default is O

TCSS422: Operating Systems [Fall 2021) 68

TCS5422: Computer Operating Systems [Fall 2021)
Le7 Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

‘ Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2 FEEDBACK - 3
= (cont’d) Wh:t hagghtin's’ whe;l v;)u n;l'anuallv gec?ld:’ f°": = (cont’d) What happens when you manually declde for a
process to have a higher priority than another? How does . PR o
. 7 process to ha gher priol ? How doe
this effect the scheduler? rocess to have a higher priority than another? How 13
this effect the scheduler?

= If 2 identical CPU-bound processes run simultaneously on o . i
a single-CPU Linux system, each processes share of the = Process priority, and the nice command are explained
CPU time will be proportional to (20 - p), where p is the further when we discuss the Linux Completely Fair
process priority. Scheduler at the end of Chapter 9

= A process run with nice +15, will receive 25% of the
original CPU time for a normal-priority process:
(20 - 15)/(20 - 0) = 0.25 > 25%
= For 2 Identical processes, what Is the lowest % timeshare
posslble when adjusting process prlority with nice?
=(20-19)/ (20 -0)
"(20-19)/(20-0)=1/20=.05> 5%

TCS5422: Operating Systems [Fall 2021] 69 TCS5422: Operating Systems [Fall 2021] L6.10
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma October 19, 2021

October 19, 2021

OBJECTIVES - 10/19 OBJECTIVES - 10/19
= Questions from 10/14 = Questions from 10/14
| = Assignment O | = Assignment O
= C Tutorial - Pointers, Strings, Exec in C | = C Tutorial - Pointers, Strings, Exec in C |
= Quiz 1 - Active Reading Chapter 9 = Quiz 1 - Active Reading Chapter 9
= Chapter 8: Multi-level Feedback Queue = Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler = MLFQ Scheduler
= Job Starvation = Job Starvation
= Gaming the Scheduler = Gaming the Scheduler
= Examples = Examples
= Chapter 9: Proportional Share Schedulers = Chapter 9: Proportional Share Schedulers
[omoberisaon [IERommesman ol in e o [ooberisaon [0 e s 200 gt - eams o2
11 12

Slides by Wes J. Lloyd L6.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/19

= Questions from 10/14

= Assignment O

= C Tutorlal - Polnters, Strings, Exec In C
| = Quiz 1 - Active Reading Chapter 9 |

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

TCS5422: Operating Systems [Fall 2021] 613
School of Engineering and Technology, University of Washington - Tacoma.

l October 19, 2021

13

CHAPTER 8 -

MULTI-LEVEL FEEDBACK E

QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington -

October 19, 2021

15

Round-Robin
within a Queue

[High Priority] Q8 —» ;/‘] — Ej\l

= Multiple job queues

= Adjust job priority based on
observed behavior

Q7
= nteractive Jobs Qe
= Frequent 1/0 - keep priority high Q5
= Interactive jobs require fast .
response time (GUI/UI) Q4 —-(c)
—
= Batch Jobs Q3
= Require long periods of CPU Q2
utilization
* Keep priority low [Low Priority] Q1 —.@"J
TCSS422: Oy i [Fall 2021]
l G Scho! ofExgneerpg and Techmology, University o Washigton “Tacome 17

17

Slides by Wes J. Lloyd

OBJECTIVES - 10/19

= Questions from 10/14

= Assignment O

= C Tutorial - Pointers, Strings, Exec in C
® Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
[~ MLFQ Scheduler]
= Job Starvation
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers

l October 19, 2021

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

14

MULTI-LEVEL FEEDBACK QUEUE

= Objectives:

=Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Fall 2021]

(Octoher 19,2021 School of Engineering and Technology, University of Washington - Tacoma

16

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (])

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for 1/0 priority stays the same

MLFQ approximates SJF

TC55422: Operating Systems [Fall 2021]
OEEERATR School of Engineering and Technology, University of Washington - Tacoma 1618

18

10/21/2021

L6.3

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

MLFQ: LONG RUNNING JOB MLFQ: BATCH AND INTERACTIVE JOBS

= Three-queue scheduler, time slice=10ms " A rrival_time =0MS, A\, 1ime=200ms,
" B,yn_time =20mMS, B, pjvar_time =100ms

Q2
Priority
Priority Q2
Q1
Q1
0
Q Qo
o 50 100 150 200 o w0 100 150 200
. . Scheduling multiple jobs (ms;
Long-running Job Over Time (msec) 9 ple jobs (ms)
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021)
‘ Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma Le.19 ‘ Octobee D028 School of Engineering and Technology, University of Washington - Tacoma L6.20

19 20

MLFQ: BATCH AND INTERACTIVE - 2 OBJECTIVES - 10/19

= Continuous interactive job (B) with long running batch job (A) = Questions from 10/14
= Low response time is good for B = Assignment O
= A continues to make progress = C Tutorial - Pointers, Strings, Exec in C

The MLFQ approach keeps interactive job(s) at the highest priority ® Quiz 1 - Active Reading Chapter 9

R R NEE b
§ N HER 3
CEN RN R A | i
N § NER 3 = Chapter 8: Multi-level Feedback Queue
N .
Q1 B. MLFQ Scheduler
| , | = Job Starvation |
Qo Illlllllllllll = Gaming the Scheduler
6 s 100 150 200 = Examples
A Mixed 1/O-intensive and CPU-intensive Workload (msec) = Chapter 9: Proportional Share Schedulers
TCSS422: Oy ating Syste [Fall 2021) TCSS422: Oy iting Syste [Fall 2021]
October19, 2021 School of E:;r:ele':\gngy:ned’:chiﬂlogv, University of Washington - Tacoma te21 October 19, 2021 School of E:;:ele':fngv:n:mrsecn:alagy, University of Washington - Tacoma Le.22

21 22

MLFQ: ISSUES OBJECTIVES - 10/19

= Starvation = Questions from 10/14

[High Prierity] Q8 — (A} —> (8 4'_"1(-:)—s (D)—> (E)—>(F) = Assignment O
o7 - - N - N B = C Tutorial - Pointers, Strings, Exec in C
Q6 ® Quiz 1 - Active Reading Chapter 9
Q3 = Chapter 8: Multi-level Feedback Queue
Q4 = MLFQ Scheduler
o2 = Job Starvation

| = Gaming the Scheduler |

Q2 = Examples

[Low Priorityl QL —» (G)—» (1) CPU bound batch job(s) = Chapter 9: Proportional Share Schedulers

[omoberisaon IR s A ssinon s [ooberisaon [0 e s 200 gt - eams oz

23 24

Slides by Wes J. Lloyd L6.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

MLFQ: ISSUES - 2

10/21/2021

RESPONDING TO BEHAVIOR CHANGE

® Gaming the scheduler
= |Issue 1/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process

High Prioity] Q8 —— () —> (8) —> () —(0)— (£)—(F)
Q7
@
Qs
Q4
@
Q2
Priority becomes stuck ‘ [Low Priority] QL ——»(G)——» (1) CPU bound batch ob(s)

TC55422; Operating Systems [Fall 2021]
‘ Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma Le.25

25

RESPONDING TO BEHAVIOR CHANGE - 2

_

T starvation i ‘& &
~—_—— .t ly_\, ‘b‘:

Without Priority Boost 4. B:§ C:%

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Fall 2021)

‘ Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

26

KEY TO UNDERSTANDING MLFQ - PB

= With priority boost
= Prevents starvation

With Priority Boost A:. a_ c E

TC55422; Operating Systems [Fall 20211
‘ October19, 2021 School of Engineering and Technology, University of Washington - Tacoma te.27

27

STARVATION EXAMPLE

= Without priority boost:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= KEY: If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!

TCSS422: Operating Systems [Fall 2021]

‘ October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

28

PREVENTING GAMING

= Conslder 3 queues:

= Q2 - HIGH PRIORITY - Time Quantum 10ms

= Q1 - MEDIUM PRIORITY - Time Quantum 20 ms
= Q0 - LOW PRIORITY - Time Quantum 40 ms

_

= Job A: 200ms no I/0
= Job B: 5ms then I/0

= Job C: 5ms then I/0 Q i
P
= Q2 fills up,
starves Q1 & QO
= A makes no progress o s0 100 00
Without Priority Boost A:I B:§ c %
TCSS422: Operating Systems [Fall 2021]
‘ CERHELZTE School of Engineering and Technology, University of Washington - Tacoma 1629

29

Slides by Wes J. Lloyd

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

CULLIL < |

Without(Left) and With{Right) Gaming Tolerance

TCS5422: Operating Systems [Fall 2021]
‘ EEEAEL ‘ School of Engineering and Technology, University of Washington -Tacoma 1630

30

L6.5

TCSS 422 A - Fall 2021
School of Engineering and Technology

WE WILL RETURN AT

2:45PM

TCSS422: Operating Systems [Fall 2021]

(e T A School of Engineering and Technology, University of Washington -

31

PRACTICAL EXAMPLE

10/21/2021

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

0) 100 150 20

Example} 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Fall 2021)

l Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

32

MLFQ RULE SUMMARY

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)
= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

TCS5422: Operating Systems [Fall 2021]
l Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma 1633

33

OBJECTIVES - 10/19

= Questions from 10/14
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Quiz 1 - Active Reading Chapter 9

= Chapter 8: Multi-level Feedback Queue
= MLFQ Scheduler
= Job Starvation
= Gaming the Scheduler

L= Examples |
= Chapter 9: Proportional Share Schedulers
TCSS422: Oy ating Syste [Fall 2021]
l CERHELZTE R A T AT N T e Ot B o = T 1635

Slides by Wes J. Lloyd

= The refined set of MLFQ rules:
= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCSS422: Operating Systems [Fall 2021]

l (Octoher 19,2021 School of Engineering and Technology, University of Washington - Tacoma

34

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high pricrity jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order.

Job Arrival Time Job Len Tt shice 15 \
A ToH an JoB +ime

B T=0 1o ?ﬁ%%k&‘ﬂ Bd:c’ﬂ\(’. 6/5
T 3 Re Ay

A
(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

PR B Pg f8

T

. b
HIG IABE CAR ¢ |
Wk | B CCB(BB B | BB
4
|

Low

o 3 6 T2 13 2 28
36

L6.6

TCSS 422 A - Fall 2021 10/21/2021
School of Engineering and Technology

EXAMPLE EXAMPLE
= Question: = Question:
= Given a system with a quantum length of 10 ms in its highest = Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running highest priority level to guarantee that a single long-running
(and potentiallgﬁstarving)job gets at least 5% of the CPU? (and potentially starving) job gets at least 5% of the CPU?

@ BC0E

= Some combination of n short jobs runs for a total of 10 ms per

8y .05 (96 =1D cycle without relinquishing the CPU
Q = E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
0 2 0 = n jobs always uses full time quantum (10 ms)
e PB = E = Z 0 ns = Batch jobs starts, runs for full quantum of 10ms
405 = All other jobs run and context switch totaling the quantum per cycle

= If 10ms is 5% of the CPU, when must the priority boost be ???
= ANSWER - Priority boost should occur every 200ms

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
l Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma Le.37 Octobee D028 School of Engineering and Technology, University of Washington - Tacoma Le.38

37 38

OBJECTIVES - 10/19

= Questions from 10/14
= Assignment O
= C Tutorial - Pointers, Strings, Exec in C

= Quiz 1 - Active Reading Chapter 9 CHAPTER 9 =
PROPORTIONAL SHARE

= Chapter 8: Multi-level Feedback Queue
* MLFQ Scheduler SCHEDULER
= Job Starvation
= Gaming the Scheduler

= Examples
| = Chapter 9: Proportional Share Schedulers |
TCS$422: Operating Systems [Fall 2021] TCS$422: Operating Systems [Fall 2021]
l Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma. 1639 Cchoberio 2028 School of Engineering and Technology, University of Washington -

39

OBJECTIVES - 10/19 PROPORTIONAL SHARE SCHEDULER

= Chapter 9: Proportional Share Schedulers = Also called fair-share scheduler
| = Lottery scheduler | or lottery scheduler
= Ticket mechanisms

= Guarantees each job receives some percentage of CPU

2SS ED time based on share of “tickets”

= Linux Completely Fair Scheduler
= Each job receives an allotment of tickets

= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
= CPU, disk I/0, memory

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
l G School of Engineering and Technology, University of Washington - Tacoma Lo OEEERATR School of Engineering and Technology, University of Washington - Tacoma ‘o

41 42

Slides by Wes J. Lloyd L6.7

TCSS 422 A — Fall 2021

10/21/2021
School of Engineering and Technology

LOTTERY SCHEDULER LOTTERY SCHEDULER IMPLEMENTATION

= Simple implementation TN N N
head —{ #5% = Fet 1 Ty oL
= Just need a random number generator Ny e NS
Picks the winning ticket

1

= Maintain a data structure of jobs and tickets (list) :
5

= Traverse list to find the owner of the ticket ° winner = getrandom(0, totaltickets):

= Consider sorting the list for speed 10 -
1
12 {current) {
13 counter - counter + current->tickets;
1 (counter > winner)
s :
17)
1

TCSS422: Oy ating Syste [Fall 2021] TCSS422: Oy iting Syste [Fall 2021]
‘ (R0 L School of Engineering an Technology, University of Washington - Tacoma Lo43 ‘ (il il School of Engineeting and Technology, Uriversity of Washington - Tacoma Lo44

43 44

OBJECTIVES - 10/19 TICKET MECHANISMS

= Chapter 9: Proportional Share Schedulers

= Ticket currency / exchange
= Lottery scheduler

= User allocates tickets in any desired way
[Ticket mechanisms I = 0S converts user currency into global currency
= Stride scheduler
= Linux Completely Fair Scheduler

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 2 50 (global currency)

User B > 10(B's currency) to B1 - 100 (global currency)

TCS5422: Operating Systems [Fall 202 TC55422: Operating Systems [Fall 2021]
‘ October19, 2021 School of Engineering and Technology, University of Washington - Tacoma. Le4s October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma Le.48

45 46

TICKET MECHANISMS - 2 LOTTERY SCHEDULING

= Ticket transfer

= Scheduler picks a winning ticket
= Temporarily hand off tickets to another process

= Load the job with the winning ticket and run it
= Ticket inflation = Example:

= Given 100 tickets in the pool

Job A has 75 tickets: 0 - 74
= If a process needs more CPU time, it can boost tickets. Job B has 25 tickets: 75 - 99

= Process can temporarily raise or lower the number of
tickets it owns

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: &4 B A A B A A A A A A B A B A

= But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ G School of Engineering and Technology, University of Washington - Tacoma 1647 OEEERATR School of Engineering and Technology, University of Washington - Tacoma o8

47 48

Slides by Wes J. Lloyd L6.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

0 Al heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Incressing number of con losees

TC55422; Operating Systems [Fall 2021]
Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma Le.49

49

LOTTERY SCHEDULING CHALLENGES

10/21/2021

LOTTERY FAIRNESS

= With two jobs

Each with the same number of tickets (t=100)

10

Unfairness [Avarage)

1 10 1000

100
Job Lenglh

When the job length is not very long,
average unfairness can be

TCS5422: Operating Systems [Fall 2021] 1650
School of Engineering and Technology, University of Washington - Tacoma

October 19, 2021

OBJECTIVES - 10/19

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best
= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?
= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TC55422; Operating Systems [Fall 20211
Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma te.s1

51

STRIDE SCHEDULER

Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms

= Stride scheduler |

= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Fall 2021] 652

(Octoher 19,2021 School of Engineering and Technology, University of Washington - Tacoma

52

STRIDE SCHEDULER - 2

= Addresses statistical probability issues with
lottery scheduling

= |nstead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Fall 2021]
G School of Engineering and Technology, University of Washington -Tacoma 1653

53

Slides by Wes J. Lloyd

= Jobs have a “stride” value
= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is Inverse In proportlon to the job’s number of

tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > A4, = 10000/100 = 100 stride
= Job B has 50 tickets 2> B4 = 10000/50 = 200 stride
= Job C has 250 tickets > Cqe = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCS5422: Operating Systems [Fall 2021]
OEEERATR School of Engineering and Technology, University of Washington - Tacoma Losd

54

L6.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

STRIDE SCHEDULER - 3

= Basic algorithm:

1. Stride scheduler picks job with the lowest pass value
2. Scheduler increments job’s pass value by its stride and

starts running
3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job...

TCS5422: Operating Systems [Fall 2021]

Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma

L6.55

55

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

® Increment counter until > 100 (%
" Pick a new job: two-way tie A =100
Pass(A) Pass(?) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 . Initial job selection
100 4] 0 is random. All @ 0
100 200 0 c
100 200 40 c 4 C has the most tickets
100 200 80 c and receives a lot of
100 200 120 A opportunities to run...
200 200 120 c
200 200 160 c
200 200 200

TCSS422: Operating Systems [Fall 2021]

October19, 2021 School of Engineering and Technology, University of Washington - Tacoma

16.57

57

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
= Over time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority € =250
A =100
Pass(A) Pass(2) Pass(C) Whe Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0

100 200 0 c

100 200 40 c

100 200 80 c

100 200 120 A

200 200 120 c

200 200 160 c

200 200 200

TCS3422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

16.59

59

Slides by Wes J. Lloyd

10/21/2021

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets

=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Fall 2021)

‘ Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

56

STRIDE SCHEDULER EXAMPLE

= We set A’s counter (pass value) to A’s stride = 100

-3

= Next scheduling decision between B (pass=0) and C (pass=0)

= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(t) Pass(C) Whe Runs? A =100
(stride=100) (stride=200) (stride=40) B =50
0 0 0
100 0 0
100 200 0 c
100 200 40 c ﬁ C has the most tickets
100 200 80 c and is selected to run
100 200 120 A more often ...
200 200 120 c
200 200 160 c
200 200 200

TCSS422: Operating Systems [Fall 2021]

‘ October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

58

OBJECTIVES - 10/19

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler

| = Linux Completely Fair Scheduler |

TCS5422: Operating Systems [Fall 2021]

‘ EEEAEL School of Engineering and Technology, University of Washington - Tacoma

16.60

60

L6.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)
= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel
= 5% of CPU time spent
in the CPU scheduler!

£ 35,
& 30
25
20
15§
10]

= Study highlights

N karmel
importance for

Cycles In kemel co
w

high performance kernel/sehed
0S kernels and fffffffffff
CPU schedulers ! S fFELFSI T 5382

Figure 5: Kernel time, especially time spent in the scheduler,

is a significant fraction of WSC cycles.
so0: nttp; . 7494652780252

10/21/2021

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System
= In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

= Each scheduling class has a runqueue
= Groups process of same class
= In class, scheduler picks task w/ lowest vruntime to run

= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

TCS5422: Operating Systems [Fall 2021)
‘ Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma

o ‘

TCSS422: Operating Systems [Fall 2021)

Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

61 62

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)
= How to show scheduling class and priority:

= fclass
ps -elfc

" §priority (nice value)
Ps ax -o pid,ni,cls,pri,cmd

COMPLETELY FAIR SCHEDULER - 3

® Linux 2 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long

each thread/process has run
= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched latency ns
kernel.sched latency ns = 24000000
$ sudo sysctl kernel.sched min_granularity ns
kernel.sched min granularity ns = 3000000
$ sudo
kernel.

sched wakeup granularity ns = 4000000

sysctl kernel.sched wakeup granularity ns

TCSS422: Operating Systems [Fall 2021]

‘ October19, 2021 School of Engineering and Technology, University of Washington - Tacoma.

L6.63

TCSS422: Operating Systems [Fall 2021]

October 19, 2021 School of Engineering and Technology, University of Washington - Tacoma

63 64

COMPLETELY FAIR SCHEDULER - 4

Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= If system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity ns
(4ms)
Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
Example:
sched_latency_ns (24ms)
if (procin runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue

Ret: hed_min_granularity_ns-sched_latency_t

CFS TRADEOFF

sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness
= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

TCS3422: Operating Systems [Fall 2021]

‘ G School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Fall 2021]

EEEAEL School of Engineering and Technology, University of Washington - Tacoma

16.66

65 66

Slides by Wes J. Lloyd

L6.11

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A - Fall 2021
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 5

=" Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed
processes removed fy [

Nodes reprasent
sched_entity(s)
indexed by their

virtual runtime:

S (TS T R T

virtual runtime

Most need of CPU Least need of CPU
TC55422; Operating Systems [Fall 2021]
l Octobenoi202.8 School of Engineering and Technology, University of Washington - Tacoma Le.67

67

COMPLETELY FAIR SCHEDULER - 6

= CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

= Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
Identifying the next job to schedule is really fast!

TCS5422; Operating Systems [Fall 2021]

l Octoberd,2021 School of Engineering and Technology, University of Washington - Tacoma 1669

69

QUESTIONS

71

Slides by Wes J. Lloyd

10/21/2021

CFS: JOB PRIORITY

= Time slice: Linux “Nice value”
= Nice predates the CFS scheduler / :
= Top shows nice values R O
= Process command (nice & priority)f

pPs ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
= Influences job’s position in rb-tree

TCSS422: Operating Systems [Fall 2021)

l Octobee D028 School of Engineering and Technology, University of Washington - Tacoma

68

COMPLETELY FAIR SCHEDULER - 7

= More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://man o ntu.com/man ionic/man7? hed.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TC55422: Operating Systems [Fall 2021]
l (Octoher 19,2021 School of Engineering and Technology, University of Washington - Tacoma

70

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

