

OBJECTIVES - 10/14

- Questions from 10/12
- Assignment 0
- C Tutorial - Pointers, Strings, Exec in C
- Chapter 7: Scheduling Introduction
- Scheduling metrics
- Turnaround time, Jain's Fairness Index, Response time
- FIFO, SJF, STCF, RR schedulers
- Chapter 8: Multi-level Feedback Queue
- MLFQ Scheduler
- Job Starvation
- Gaming the Scheduler
- Examples

- Ctober 14, 2021 | TCSS422: Operating Systems [Fall 2021]
- Stool of Engineering and Technology, University of Washington - Tacoma

4

3

Slides by Wes J. Lloyd

/

10

12

9

FEEDBACK

■ I'm a little confused on the structures that are used in context switching: process_struct and the k stack

■ k-stack and process_struct are from the context switch chart

■ k-stack is the kernel stack

■ CPU registers for current running process are saved to the kernel-stack when context switch is performed (running→ready)

■ Registers are restored from the kernel-stack later when the process is scheduled next (ready→running)

■ From Chapter 4 "proc struct" is the process data structure (this is xv6 pedagogical linux)

■ "proc struct" has a member called "context" which represents the values for the CPU registers

October 14, 2021

| TCSS422: Operating Systems [Fall 2021] | School of Engineering and Technology, University of Washington - Taxoma

OBJECTIVES - 10/14

 Questions from 10/12
 Assignment 0
 C Tutorial - Pointers, Strings, Exec in C
 Chapter 7: Scheduling Introduction
 Scheduling metrics
 Turnaround time, Jain's Fairness Index, Response time
 FIFO, SJF, STCF, RR schedulers
 Chapter 8: Multi-level Feedback Queue
 MLFQ Scheduler
 Job Starvation
 Gaming the Scheduler
 Examples

October 14, 2021
 TCSS42: Operating Systems [Fail 2021]
 School of Engineering and Technology, University of Washington - Tacoma

15.12

Slides by Wes J. Lloyd

OBJECTIVES - 10/14 • Ouestions from 10/12 Assignment 0 C Tutorial - Pointers, Strings, Exec in C Chapter 7: Scheduling Introduction Scheduling metrics Turnaround time, Jain's Fairness Index, Response time • FIFO, SJF, STCF, RR schedulers ■ Chapter 8: Multi-level Feedback Queue MLFO Scheduler Job Starvation Gaming the Scheduler Examples October 14, 2021 L5.14

13 14

SCHEDULING METRICS ■ Metrics: A standard measure to quantify to what degree a system possesses some property. Metrics provide <u>repeatable</u> techniques to quantify and compare systems. Measurements are the numbers derived from the application of metrics Scheduling Metric #1: Turnaround time The time at which the job completes minus the time at which the job arrived in the system $T_{turnaround} = T_{completion} - T_{arrival}$ How is turnaround time different than execution time? October 14, 2021 L5.16

16

SCHEDULING METRICS - 2 Scheduling Metric #2: Fairness Jain's fairness index Quantifies if jobs receive a fair share of system resources $\mathcal{J}(x_1,x_2,\ldots,x_n) = rac{(\sum_{i=1}^n x_i)^2}{n \cdot \sum_{i=1}^n x_i^2}$ n processes ■ x_i is time share of each process worst case = 1/n best case = 1 Consider n=3, worst case = .333, best case=1 ■ With n=3 and x₁=.2, x₂=.7, x₃=.1, fairness=.62 • With n=3 and x_1 =.33, x_2 =.33, x_3 =.33, fairness=1 October 14, 2021 TCSS422: Operating Systems [Fall 202 School of Engineering and Technology L5.17

OBJECTIVES - 10/14 Questions from 10/12 Assignment 0 C Tutorial - Pointers, Strings, Exec in C ■ Chapter 7: Scheduling Introduction Scheduling metrics Turnaround time, Jain's Fairness Index, Response time FIFO SJF, STCF, RR schedulers Chapter 8: Multi-level Feedback Queue MLFQ Scheduler Job Starvation Gaming the Scheduler Examples October 14, 2021 L5.18

18

OBJECTIVES - 10/14

Questions from 10/12
Assignment 0
C Tutorial - Pointers, Strings, Exec in C
Chapter 7: Scheduling Introduction
Scheduling metrics
Turnaround time, Jain's Fairness Index, Response time
FIFO_SJF_STCF, RR schedulers
Chapter 8: Multi-level Feedback Queue
MLFQ Scheduler
Job Starvation
Gaming the Scheduler
Examples

October 14, 2021

CSS422: Operating Systems [Fail 2021]
School of Engineering and Technology, University of Washington - Tacoma

19 20

SJF: WITH RANDOM ARRIVAL

If jobs arrive at any time: duration a=100s, b/c=10s

A @ t=0sec, B @ t=10sec, C @ t=10sec

B,C arrive

A B C

Time (Second)

Average turnaround time = \frac{100 + (110 - 10) + (120 - 10)}{3} = 103.33 sec

October 14, 2021

TCSS422: Operating Systems [Pail 2021]

Color of Engineering and Technology, University of Washington - Taccoma

22

21

SCTF: SHORTEST TIME TO COMPLETION FIRST

Consider: duration a=100sec, b/c=10sec

A_{len}=100 A_{arrival}=0

B_{len}=10, B_{arrival}=10, C_{len}=10, C_{arrival}=10

(B,C arrive)

A \downarrow B C

Time (Second)

Average turnaround time = $\frac{(120-0)+(20-10)+(30-10)}{3} = 50 \text{ sec}$ October 14, 2021

Cotober 14, 2021

25 26

29 30

32

33 34

35 36

37 38

39 40

41 42

MULTI-LEVEL FEEDBACK QUEUE

Objectives:
Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

October 14, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Taccoma

15.44

43 44

MLFQ: DETERMINING JOB PRIORITY

New arriving jobs are placed into highest priority queue

If a job uses its entire time slice, priority is reduced (1)

Jobs appears CPU-bound ("batch" job), not interactive (GUI/UI)

If a job relinquishes the CPU for I/O priority stays the same

MLFQ approximates SJF

46

45

47 48

OBJECTIVES - 10/14

Questions from 10/12
Assignment 0
C Tutorial - Pointers, Strings, Exec in C
Chapter 7: Scheduling Introduction
Scheduling metrics
Turnaround time, Jain's Fairness Index, Response time
FIFO, SJF, STCF, RR schedulers
Chapter 8: Multi-level Feedback Queue
MLFQ Scheduler
Job Starvation
Gaming the Scheduler
Examples

Ctober 14, 2021

CSS42: Operating System: [fail 2021]
School of Engineering and Technology, University of Washington - Taxonna

50

52

54

49

MLFQ: ISSUES

Starvation

[High Priority] $Q8 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E \longrightarrow F$ Q7 Q6 Q5 Q4 Q3 Q2[Low Priority] $Q1 \longrightarrow G \longrightarrow H$ CPU bound batch Job(s)

October 14, 2021 TCSS422: Operating Systems [Fall 2021] School of Engineering and Technology, Ur RESPONDING TO BEHAVIOR CHANGE

Q2
Q1
Q1
Q0
Starvation
Starvation
Without Priority Boost
Reset all jobs to topmost queue after some time interval S

Cctober 14, 2021

CCCCC22: Coperating Systems [Fall 2021]
School of Equipmentity and Technology University of Westignton - Taccoma

[5.52]

51

RESPONDING TO BEHAVIOR CHANGE - 2

With priority boost
Prevents starvation

Q2

With Priority Boost
A: B: C:

October 14, 2021

TCSS422: Operating Systems [Pail 2021]
School of Engineering and Technology, University of Washington - Tacoma

Without priority boost:

Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
Rule 2: If Priority(A) = Priority(B), A & B run in RR.

KEY: If time quantum of a higher queue is filled, then we don't run any jobs in lower priority queues!!!

53

OBJECTIVES - 10/14

Questions from 10/12
Assignment 0
C Tutorial - Pointers, Strings, Exec in C
Chapter 7: Scheduling Introduction
Scheduling metrics
Turnaround time, Jain's Fairness Index, Response time
FIFO, SJF, STCF, RR schedulers
Chapter 8: Multi-level Feedback Queue
MLFQ Scheduler
Job Starvation
Gaming the Scheduler
Examples

Coober 14, 2021

CSS42: Operating Systems [Fail 2021]
School of Engineering and Technology, University of Washington - Tacoma

55 56

58

57

OBJECTIVES - 10/14

Questions from 10/12
Assignment 0
C Tutorial - Pointers, Strings, Exec in C
Chapter 7: Scheduling Introduction
Scheduling metrics
Turnaround time, Jain's Fairness Index, Response time
FIFO, SJF, STCF, RR schedulers
Chapter 8: Multi-level Feedback Queue
MLFQ Scheduler
Job Starvation
Gaming the Scheduler
Examples

Ctober 14, 2021

TCS5422: Operating Systems [Fail 2021]
Stoool of Engineering and Technology, University of Washington - Tacoma

59 60

L5.62

61

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units. When the priority boost fires, the current job is preempted, and the next scheduled job is run in round-robin order.

 Job
 Arrival Time
 Job Length

 A
 T=0
 4

 B
 T=0
 16

 C
 T=0
 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above. Draw vertical lines for key events and be sure to label the X-axis times as in the example Please draw clearly. An unreadable graph will loose points.

63

The refined set of MLFQ rules: Rule 1: If Priority(A) > Priority(B), A runs (B doesn't). Rule 2: If Priority(A) = Priority(B), A & B run in RR. Rule 3: When a job enters the system, it is placed at the highest priority. Rule 4: Once a job uses up its time allotment at a given level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).Rule 5: After some time period S, move all the jobs in the system to the topmost queue.

October 14, 2021 TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

62

EXAMPLE

- Question:
- Given a system with a quantum length of 10 ms in its highest queue, how often would you have to boost jobs back to the highest priority level to guarantee that a single long-running (and potentially starving) job gets at least 5% of the CPU?
- Some combination of n short jobs runs for a total of 10 ms per cycle without relinquishing the CPU
- E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
- n jobs always uses full time quantum (10 ms)
- Batch jobs starts, runs for full quantum of 10ms
- All other jobs run and context switch totaling the quantum per cycle
- If 10ms is 5% of the CPU, when must the priority boost be ???
- ANSWER → Priority boost should occur every 200ms

October 14, 2021 TCSS422: Operating Systems [Fall 2021] School of Engineering and Technology, University of Washington - Tacoma

64

Slides by Wes J. Lloyd