
TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.1Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 10/12

1

2

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.2Slides by Wes J. Lloyd

 10% off textbook code: TREAT10 (through Friday Oct 15)

 https://www.lulu.com/shop/remzi -arpaci-dusseau-and-andrea-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-

23779877.html?page=1&pageSize=4

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

TEXT BOOK COUPON

Tuesdays:

▪4:00 to 4:30 pm - CP 229

▪7:00 to 7:30+ pm – ONLINE via Zoom

Thursdays

▪4:15 to 4:45 pm – ONLINE via Zoom

▪7:00 to 7:30+ pm – ONLINE via Zoom

Or email for appointment

> Of f ice Hours set based on Student Demographics sur vey feedback

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

OFFICE HOURS – FALL 2021

3

4

https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

October 12, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

ONLINE DAILY FEEDBACK SURVEY

October 12, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.6

5

6

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (50 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.58 (- previous 7.00)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.49 (- previous 5.89)

October 12, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

MATERIAL / PACE

 What is the “kernel” and how is it closely related to the

operating system?

▪ The kernel is the executable program that IS the operating

system

▪ On Ubuntu 20.04, the kernel is at:
ls -l /boot/vmlinuz-$(uname -r)

▪ Commands to display file information:
file -v /boot/vmlinuz-$(uname -r)

stat -v /boot/vmlinuz-$(uname -r)

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK

7

8

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.5Slides by Wes J. Lloyd

 What are fork(), wait(), and exec() used for and why are they

beneficial?

 fork() – API CALL to create a new process

▪ Commonly used function to create new process in Linux C

▪ Creates new process by cloning the parent and duplicating memory

▪ Is still relatively efficient because Copy-On-Write (COW) is used to

duplicate memory

▪ Copy-on-write (COW) delays or altogether prevents duplication of

process data. Initially, the parent and the child share a single copy.

Data is marked if it is changed, and a duplicate is made, and each

process receives a unique copy. Data duplication only occurs when

data is changed, until then process data is shared read-only.

▪ In this way the OS is lazy (again!)

▪ *What other approach mentioned in class involved the OS being lazy?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK - 2

 What are fork(), wait(), and exec() used for and why are
they beneficial?

 wait(), waitpid() – API CALLS that wait for a child process
to finish

 Two variants:

 waitpid() – provide the process ID to wait for
ISSUE – if wrong ID is provided, can accidentally wait
forever

 wait() – waits for the first child process to exit
ISSUE – first process that exits may not be the desired
one

▪ Can check the ID and wait() again if not the right child

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

FEEDBACK - 3

9

10

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.6Slides by Wes J. Lloyd

 What are fork(), wait(), and exec() used for and why are they

beneficial?

 execl, execlp, execle: transfer control of running process to external

program (executable) using l ists

▪ Variable number of arguments passed to function

 Execv, execvp, execve: transfer control of running process to

external program (executable) using arrays (vectors)

▪ Fixed number of arguments passed to function

 Once control is transferred to an external program, when the

external program exits, the parent process can trap this, but control

does not return to the original executable

 I may need to practice the different exec() cal ls. I ’m sti l l confused

how to cal l them.

 We will have a tutorial on using the exec routines

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

FEEDBACK - 4

 How is the legacy program, when working with exec processes,

l ike a “black box”?

 When using exec, you’re calling an executable program.

 With an executable, the source code may be unavailable, so it

is not known exactly what the external program may do.

(BE CAREFUL TO ONLY CALL TRUSTED EXECUTABLES)

 The executable can be any program, written in any language,

even assembly language !

 Your C program acts only to

generate the necessary inputs

to invoke the external program

 C program acts like a “wrapper”

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

FEEDBACK - 5

11

12

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.7Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

OBJECTIVES – 10/12

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

OBJECTIVES – 10/12

13

14

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.8Slides by Wes J. Lloyd

 In the homework, it specifies to use “non -interactive”

commands. What does this mean exactly?

 An non-interactive command does not require any input

from the user (i.e. from the keyboard)

 Non-interactive commands and scripts can run entirely on

their own without intervention

 These commands are considered “headless” in

that they don’t feature a USER INTERFACE,

either a GUI, or TUI

 What is a TUI?

▪ *Text-based User Interface

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

FEEDBACK ON HOMEWORK 0

 Request submitted for School of Engineering and Technology

hosted Ubuntu 20.04 VMs for TCSS 422 – Fall 2021

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

TCSS 422 – SET VMS

15

16

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.9Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

OBJECTIVES – 10/12

CHAPTER 5:

C PROCESS API

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.18

17

18

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.10Slides by Wes J. Lloyd

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

exec()

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p3.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

…

19

20

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.11Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

EXEC EXAMPLE - 2

…

execvp(myargs[0], myargs); // runs word count

printf("this shouldn’t print out");

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

 Example:
https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child: redirect standard output to a file

close(STDOUT_FILENO);

open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

…

21

22

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.12Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

// now exec "wc"...

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p4.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)

int wc = wait(NULL);

}

return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

23

24

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.13Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.25

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

QUESTION: PROCESS API

25

26

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.14Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

OBJECTIVES – 10/12

CH. 6:

LIMITED DIRECT

EXECUTION

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.28

27

28

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.15Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECTIVES – 10/12

 How does the CPU support running so many jobs

simultaneously?

 Time Sharing

 Tradeoffs:

▪ Performance

▪ Excessive overhead

▪ Control

▪ Fairness

▪ Security

 Both HW and OS support

is used

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

VIRTUALIZING THE CPU

29

30

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.16Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

31

32

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.17Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

DIRECT EXECUTION - 2

 Too little control:

▪ No security

▪ No time sharing

 Too much control:

▪ Too much OS overhead

▪ Poor performance for compute & I/O

▪ Complex APIs (system calls), difficult to use

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

CONTROL TRADEOFF

33

34

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.18Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

CONTEXT SWITCHING OVERHEAD

Time

Overhead

WE WILL RETURN AT

2:40PM

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.36

35

36

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.19Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

OBJECTIVES – 10/12

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do

anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

LIMITED DIRECT EXECUTION

37

38

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.20Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

OBJECTIVES – 10/12

 Utilize CPU Privilege Rings (Intel x86)

▪ rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:

Application is running, but w/o direct I/O access

 Kernel mode:

OS kernel is running performing restricted operations

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

CPU MODES

access no access

39

40

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.21Slides by Wes J. Lloyd

 User mode: ring 3 - untrusted

▪ Some instructions and registers are disabled by the CPU

▪ Exception registers

▪ HALT instruction

▪MMU instructions

▪ OS memory access

▪ I/O device access

 Kernel mode: ring 0 – trusted

▪ All instructions and registers enabled

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

CPU MODES

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

OBJECTIVES – 10/12

41

42

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.22Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

▪ Device I/O (e.g. file I/O)

▪ Task swapping: context switching between processes

▪Memory management/allocation: malloc()

▪ Creating/destroying processes

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps

▪ System call: (planned) user → kernel

▪ SYSCALL for I/O, etc.

▪ Exception: (error) user → kernel

▪ Div by zero, page fault, page protection error

▪ Interrupt: (event) user → kernel

▪ Non-maskable vs. maskable

▪ Keyboard event, network packet arrival, timer ticks

▪ Memory parity error (ECC), hard drive failure

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

43

44

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.23Slides by Wes J. Lloyd

Exception type
Synchronous vs.

asynchronous

User request vs.

coerced

User maskable vs.

nonmaskable

Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

EXCEPTION TYPES

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.46

45

46

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.24Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.47

Computer BOOT Sequence:
OS with Limited Direct Execution

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

OBJECTIVES – 10/12

47

48

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.25Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

MULTITASKING

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

MULTITASKING

A process gets stuck in an infinite loop.

→ Reboot the machine

49

50

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.26Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.51

What problems exist for regaining the control of

the CPU with cooperative multitasking OSes?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

QUESTION: MULTITASKING

51

52

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.27Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

53

54

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.28Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.55

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

QUESTION: TIME SLICE

55

56

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.29Slides by Wes J. Lloyd

 Questions from 10/7

 C Review Survey – Closes Thursday Oct 14

 Assignment 0

 Chapter 5: Process API

▪ exec() with file redirection

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

OBJECTIVES – 10/12

 Preemptive multitasking initiates “trap”

into the OS code to determine:

 Whether to continue running the current process,

or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one.

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

CONTEXT SWITCH

58

59

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.30Slides by Wes J. Lloyd

1. Save register values of the current process to its kernel

stack

▪ General purpose registers

▪ PC: program counter (instruction pointer)

▪ kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

CONTEXT SWITCH - 2

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.61

60

61

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.31Slides by Wes J. Lloyd

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L4.62

Context Switch

 What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

 Linux

▪ < 2.6 kernel: non-preemptive kernel

▪ >= 2.6 kernel: preemptive kernel

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

INTERRUPTED INTERRUPTS

62

63

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/12/2021

L4.32Slides by Wes J. Lloyd

Use “locks” as markers of regions of non -

preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)

▪ begins at zero

▪ increments for each lock acquired (not safe to preempt)

▪ decrements when locks are released

 Interrupt can be interrupted when preempt_count=0

▪ It is safe to preempt (maskable interrupt)

▪ the interrupt is more important

October 12, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

PREEMPTIVE KERNEL

QUESTIONS

64

65

