TCSS 422 A — Fall 2021

10/12/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 10/12

| = Questlons from 10/7 |
’ = C Review Survey - Closes Thursday Oct 14
The Process API & . 4 R S EmEIE ©

Limited Direct Execution = Chapter 5: Process API

= exec() with file redirection

= Chapter 6: Limited Direct Execution
Wes J. Lloyd = Direct execution

School of Engineering and Technology ® Limited direct execution

A q A = CP

University of Washington - Tacoma A GECLS

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

October 12, 2021 TCSS422: Operating Systems [Fall 2021)

School of Engineering and Technology, University of Washington School of Engineering and Technology, University of Washington - Tacoma

October12)2021 TCSS422: Operating Systems [Fall 2021] ‘

TEXT BOOK COUPON OFFICE HOURS - FALL 2021

= 10% off textbook code: TREAT10 (through Friday Oct 15) =Tuesdays:

=4:00 to 4:30 pm - CP 229

" https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-

arpaci-dusseau/operating-systems-three-easy-pieces- =7:00 to 7:30+ pm - ONLINE via Zoom
softcover-version-100/paperback/product- 0
23779877.htmI?page=1&pageSize=4 Thursdays

=4:15 to 4:45 pm - ONLINE via Zoom
=7:00 to 7:30+ pm - ONLINE via Zoom
=0r email for appointment

> Office Hours set based on Student Demographics survey feedback

October 12, 2021 TCS5422: Operating Systems [Fall 2021]

TC55422; Operating Systems [Fall 20211
‘ Octoherd2i2021 School of Engineering and Technology, University of Washington - Tacoma. 3 School of Engineering and Technology, University of Washington - Tacoma L

TCSS 422 - Online Daily Feedback Survey - 4/1

ONLINE DAILY FEEDBACK SURVEY Quiztructions
Question 1 0spes
X . . Ona scae of 1 tn 10, lease classity your perspective on materlal covered i today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 &4 5 & 7 8 9 10
= Tuesday surveys: due by ~ Wed @ 11:59p e - e
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments
spng2021
' ! Question 2 05pe
Home
Announcements Please rate the pace of today's class:
Zoom ~ Upcoming Assignments 12z 3 4 s s 7T 8 3 1w
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%m | DueAprSat 10pm | -/Lpts
Dicouccinne Aun.r .
TCS5422: Computer Operating Systems [Fall 2021] TCSS422: C oy S Fall 2021
‘ i, EEE School of Engineering and Technology, University of Washington - Tacoma e October 12, 2021 chooi o Eogiaartrs e Teabmcit Chveraty o Weshington - Tacoma L6

Slides by Wes J. Lloyd L4.1

https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A - Fall 2021 10/12/2021
School of Engineering and Technology

MATERIAL / PACE FEEDBACK
= Please classify your perspective on material covered in today’s = What is the “kernel” and how is it closely related to the
class (50 respondents): operating system?
= 1-mostly review, 5-equal new/review, 10-mostly new =The kernel is the executable program that IS the operating
= Average - 6.58 (- prevlous 7.00) system
= On Ubuntu 20.04, the kernel is at:
= Please rate the pace of today’s class: ls -1 /boot/vmlinuz-$ (uname -r)
= 1-slow, 5-just right, 10-fast
= Average - 5.49 (- previous 5.89) = Commands to display file information:

file -v /boot/vmlinuz-$ (uname -r)
stat -v /boot/vmlinuz-$ (uname -r)

[rxy

TCS5422: Computer Operating Systems [Fall 2021) TC55422; Operating Systems [Fall 2021]
‘ Cetobes 22028 School of Engineering and Technology, University of Washington - Tacoma w7 OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2 FEEDBACK - 3
= What are fork(). walt(), and exec() used for and why are they = What are fork(), walit(), and exec() used for and why are
beneficial? they beneficlal?
= fork() - API CALL to c_reate) (0GR [o = wait(), waitpid() - API CALLS that wait for a child process
= Commonly used function to create new process in Linux C to finish

= Creates new process by cloning the parent and duplicating memory

A) - . . = Two variants:
= Is still relatively efficient because Copy-On-Write (COW) is used to

duplicate memory = waltpld() - provide the process ID to wait for)

= Copy-on-write (COW) delays or altogether prevents duplication of ;SSUE - if wrong ID is provided, can accidentally wait
process data. Initially, the parent and the child share a single copy. orever
Data is marked if it is changed, and a duplicate is made, and each = wait() - waits for the first child process to exit
process receives a unique copy. Data duplication only occurs when ISSUE - first process that exits may not be the desired
data is changed, until then process data is shared read-only. one

= In this way the OS is lazy (again!) = Can check the ID and wait() again if not the right child

= *Wh her roach mentloned In class involved th: Ing lazy?

: i : Operati]
‘ October12,2021 ;f:::wzifg:;r:e“e':\gn:y:.e.;:g\anl:ﬁ;]unwersuy of Washington - Tacoma us ‘ October 12, 2021 it g:;’:e“e’:?n?::\ed"}sec[;:lﬂ;u;{,ﬂunlvers\’ty of Washington - Tacoma La.10

FEEDBACK - 4 FEEDBACK - 5

= How is the legacy program, when working with exec processes,

11k “black box"?
= When using exec, you're calling an executable program.

= With an executable, the source code may be unavailable, so it

. is not known exactly what the external program may do.
Execv, execvp, execve; transfer control of running process to
((BE CAREFUL TO ONLY CALL TRUSTED EXECUTABLES)
= Fixed number of arguments passed to function "= The executable can be any program, written in any language,

even assembly language !

= Variable number of arguments passed to function

= Once control is transferred to an external program, when the -

external program exits, the parent process can trap this, but control = Your C program acts only to

does not return to the original executable generate the necessary inputs Output
= [may need to practice the different exec() calls. I’'m still confused to invoke the external program ot ———|

how to call them. : “ ”

= C program acts like a “wrapper
= We will have a tutorial on using the exec routines nternalbtaviorofhe ode s ukncwn
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ G School of Engineering and Technology, University of Washington - Tacoma L ‘ EE School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd L4.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/12

10/12/2021

OBJECTIVES - 10/12

= Questions from 10/7

= C Review Survey - Closes Thursday Oct 14 |

= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

October 12, 2021 TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma.

1813

13

FEEDBACK ON HOMEWORK 0

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TC55422; Operating Systems [Fall 2021]
l OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma La14

14

TCSS 422 - SET VMS

= [n the homework, It specifies to use “non-Interactive”

commands. What does this mean exactly?

= An non-interactive command does not require any input

from the user (i.e. from the keyboard)

= Non-interactive commands and scripts can run entirely on

their own without intervention

= These commands are considered “headless” in

that they don’t feature a USER INTERFACE,
either a GUI, or TUI

= What Is a TUI?
= *Text-based User Interface

October 12, 2021 TCS$422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

15

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
|' exec() with flle redlrection |
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

October 12, 2021 TCS5422: Operating Systems [Fall 20211

School of Engineering and Technology, University of Washington - Tacoma

1817

17

Slides by Wes J. Lloyd

= Request submitted for School of Engineering and Technology
hosted Ubuntu 20.04 VMs for TCSS 422 - Fall 2021

TC55422: Operating Systems [Fall 2021]
l (Octoner12,2021 School of Engineering and Technology, University of Washington - Tacoma L6

16

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Fall 2021

)]
Octoberszanzi School of Engineering and Technology, University of Washington -

18

L4.3

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

(example: execl.c)

= execl(), execlp(), execle(): const char *arg

EXEC EXAMPLE

10/12/2021

#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<sys/wait.h>

main (

*argv(]) {

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCS5422: Operating Systems [Fall 2021] La1s
School of Engineering and Technology, University of Washington - Tacoma

‘ October 12, 2021

19

EXEC EXAMPLE - 2

q execvp (myargs[0], myargs);
printf ("this shouldn’t print out";
1 {
= wait(NULL);
printf("hello, I am parent of &d (woi%d) (pidisd)\n",
e, we, (int) getpid());

prompt> ./p3
hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TC55422; Operating Systems [Fall 20211
‘ Octoherd2i2021 School of Engineering and Technology, University of Washington - Tacoma L2t

21

FILE MODE BITS

‘ S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_TWUSR
wEite permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

TCSS422: Operating Systems [Fall 2021]
‘ CRERHETE e e 142

23

Slides by Wes J. Lloyd

printf("hello world (pid:d)\n", (int)
rc = fork();
(re < 0) (
fprintf (stderr, "fork failed\n");
exit(1);
} (re

q char *myargs[3];
myargs[0] = strdup("wc");

myargs[1] = strdup("p3.c");
myargs(2] = NULL;

{ (n
printf("hello, I am child (pid:%d)\n", (in

getpid());

) getpid());

‘ October 12, 2021 TC55422; Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

1420

20

EXEC WITH FILE REDIRECTION (OUTPUT)

= Example:

https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

#include <stdio.h>
finclude <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

main(int arge, char *argv(]){
e

fprintf (stderr, "fork failed\n");
exit(1);

} (rc == 0)
close (STDOUT_FILEI

_FILENO) ;
‘ open (". /pd.oatput”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

‘ October 12, 2021 TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

422

22

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

*myargs[3];
myargs[0] = strdup
myargs[1] = strdup("pd.
myargs([2] = NULL;
execvp (myargs[0], myargs);

} {
int we = wait (NULL);

prompt> ./pd
prompt> cat pd.output
32 109 846 pd.c
prompt>

‘ CerprEnm TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

1424

24

L4.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() None of
the
above

-~
25

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API

= exec() with file redirection
| = Chapter 6: Limited Direct Execution |

= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

All of
the

above

10/12/2021

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

TC55422; Operating Systems [Fall 2021]
OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma 1428

l October 12, 2021 TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

27

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Limited direct execution
= CPU modes
= System calls and traps

= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

l AT TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Fall 2021]

(I, P School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance

= Excessive overhead
= Control

= Fairness

= Security

= Both HW and OS support
is used

29

Slides by Wes J. Lloyd

TC55422: Operating Systems [Fall 2021]
OEEEATR School of Engineering and Technology, University of Washington - Tacoma 130

L4.5

TCSS 422 A - Fall 2021 10/12/2021
School of Engineering and Technology

COMPUTER BOOT SEQUENCE: COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION 0S WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system? = What if programs could directly control the CPU / system?
0os Program 0os Program
1. Create entry for process list 1. Create entry for process list
2. Allocate memory for 2. Allocate memory for
grigracjm int Without /imits on running programs,

o (LETE] [PIRE I I el the OS wouldn’t be in control of anything
4. Set up stack with argc / and would
argv Ty
5. Clear registers 7. Run main () 5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main () 6. Execute call main () 8. Execute return from main ()
9. Free memory of process 9. Free memory of process
10. Remove from process list 10. Remove from process list
3 il 3 Il
[ommwizaom [o eman i wssingon-maoms s [ombwiam [SEE om0 eiogon e

31 32

CONTROL TRADEOFF

DIRECT EXECUTION - 2

= With direct executlon: = Too little control:
= No security

How does the OS stop a program from running, and switch = No time sharing

to another to support time sharing?

How do programs share disks and perform 1/0 if they are = Too much control:

. . > >
given direct control? Do they know about each other? T -

With direct execution, how can dynamic memory structures = Poor performance for compute & 1/0

such as linked lists grow over time? = Complex APIs (system calls), difficult to use
TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
l Octoherd2i2021 School ofE::‘\:ele':‘\gngy:nemesed\iologv, University of Washington - Tacoma 1333 l October 12, 2021 School of Erp;i:ele':igng anmeSech:ology, University of Washington - Tacoma 1334

33 34

CONTEXT SWITCHING OVERHEAD

Context Switching Totsl cost of
context swdtching

Multitasking

. WE WILL RETURN AT
irrrirnnnnrn

Sequential

Overhead
[I

2:40PM

Time
TCSS422: Operating Systems [Fall 2021] TCS8422: Operating Systems [Fall 2021]
l G School of Engineering and Technology, University of Washington - Tacoma o Setctets 202y School of Engineering and Technology, University of Washington -

35 36

Slides by Wes J. Lloyd L4.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Fall 2021]

Cetobes 22028 School of Engineering and Technology, University of Washington - Tacoma

1437

37

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Fall 2021]

October12,2021 School of Engineering and Technology, University of Washington - Tacoma.

14.39

39

CPU MODES

= User mode: ring 3 - untrusted

= Some instructions and registers are disabled by the CPU

= Exception registers
= HALT instruction

= MMU instructions

= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

TCS3422: Operating Systems [Fall 2021]

October 12, 2021 School of Engineering and Technology, University of Washington - Tacoma

La.a1

41

Slides by Wes J. Lloyd

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

10/12/2021

= Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do

anything... (e.g. it is a system / kernel level process)
= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

TCSS422: Operating Systems [Fall 2021)

OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma

La38

38

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:

0S kernel is running performing restricted operations

TCSS422: Operating Systems [Fall 2021]

October 12,2021 School of Engineering and Technology, University of Washington - Tacoma

L4.40

40

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection

= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes

| = System calls and traps |

= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Fall 2021]

EE School of Engineering and Technology, University of Washington - Tacoma

La.a2

42

L4.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device 1/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TC55422; Operating Systems [Fall 2021]
‘ Cetobes 22028 School of Engineering and Technology, University of Washington - Tacoma Laas

43

EXCEPTION TYPES

Synchronousva. Userrequestva. | Usermasiablova. Withinva between
‘asynotronous ‘ooeroed ‘nonmasiable Insiructions

rosevarones |

Aoyetonous Coercea Nonmasiabie Betwsen Rosume
—— Synhronous User reauest Nonmaskablo Rosume
intogorartimetiovertion Synehronous coorced User maskatle Witin Rosume
T —

e Synchvonous coercaa User maskatle Wit Resume
o [o P o ==
Syrchronous Coorced User maskablo Witin Rosume
|| | e |
Powertaiue | Asynchronous Coerced Nonmaskable Within Terminate
TCS5422: Operating Systems [Fall 2021]
‘ Octoherd2i2021 School of Engineering and Technology, University of Washington - Tacoma La4s
05 @ boot Hardware
(kemal mods)

initialize trap table
remambar address of
syscall handler

05 @ run Hardware Program
(kemel mode) (user mode)
Create entry for process list

Allocate memary for program

Lead pregram intz mamory

Setup usar stack with

Computer BOOT Sequence:

OS with Limited Direct Execution

move to kernel made
jump to trap handler

Handle trap

Do wark of syscal

retum-from-r
" restore reg trom kemel stack

meve ta user made

jump to BC aftar trap.

return from main
tiap via exit (1)
Frea memory of pracess
Remove from process list

TCSS422: Operating Systems [Fall 2021]

Chr s, 2 School of Engineering and Technology, University of Washington - Tacoma Laa7

47

Slides by Wes J. Lloyd

10/12/2021

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Woninecode /N merupseciine
=N

Toop() {
= Trap: any transfer to kernel mode nstruotion L

nstruction 2
= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TC55422; Operating Systems [Fall 2021]
‘ OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma Laas
05 @ boot Hardware
(kemal mods)
B initikze tap table
remarmbar address of
) S
os@ run Hardware Program
(kemel made) (user made)

Creste entry for process list
cate memery for program

Setup usm
Fill karmel stack with rag/PC
ap

rastora rags from kermal stack

move to Lser mode
Run mainQ

Jump to main
Call st
trap inta 05

save rogs to kernal stack
meve to kernel mode
jump to trap handler

Handle trap

Do wark of syscal

retum-from-trap restore reg trom kemel stack

meve ta user made

jump to BC after trap.

return from main
tiap via exit (1)

Frea memory of pracess

Remove from process list

TCSS422: Operating Systems [Fall 2021]

October 12, 2021 School of Engineering and Technology, University of Washington - Tacoma L4.46

46

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
System calls and traps
= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Fall 2021]
‘ OEEEATR School of Engineering and Technology, University of Washington - Tacoma 148

48

L4.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

MULTITASKING

= How/when should the OS regain control of the CPU to

switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX

= Opportunistic: running programs must give up control

User programs must call a special yleld system call
When performing 1/0
lllegal operations

= (POLLEV)

What problems could you for see with this approach?

TCS5422: Operating Systems [Fall 2021]

‘ Cetobes 22028 School of Engineering and Technology, University of Washington - Tacoma

L4.49

49

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

u o, 500

51

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

=Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0S Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer

interrupt?

TCS3422: Operating Systems [Fall 2021]

‘ i, EEE School of Engineering and Technology, University of Washington - Tacoma

L3

53

Slides by Wes J. Lloyd

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

10/12/2021

TCSS422: Operating Systems [Fall 2021)

OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma

L4.50

50

QUESTION: MULTITASKING

= What problems exist for regaining the control of

the CPU with cooperative multitasking 0Ses?

TCSS422: Operating Systems [Fall 2021]

(Octoner12,2021 School of Engineering and Technology, University of Washington - Tacoma

452

52

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0S Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Fall 2021]

OEEEATR School of Engineering and Technology, University of Washington - Tacoma

454

54

L4.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer
interrupt?

L o S P P TCSS422: Operating Systems [Fall 2021]

” iy

55

OBJECTIVES - 10/12

= Questions from 10/7
= C Review Survey - Closes Thursday Oct 14
= Assignment O

= Chapter 5: Process API
= exec() with file redirection
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

= Context switching and preemptive muIti-tasking]

TCS5422: Operating Systems [Fall 2021] Lass
School of Engineering and Technology, University of Washington - Tacoma.

‘ October 12, 2021

58

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack
= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

[omoberizaon |12 Crmme om0 inon s [o |

60

Slides by Wes J. Lloyd

10/12/2021

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TC55422; Operating Systems [Fall 2021]
‘ OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma La.58

56

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a dlfferent one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TC55422: Operating Systems [Fall 2021]
‘ October 12,2021 School of Engineering and Technology, University of Washington - Tacoma La.s9
Hard
(kernel mods) ardware
- initiaize trap table
remember address of

‘ syseall handlar
timar handler

‘mn intarrupt timer
‘ start timer
intarrupt CPU in X ms.

05.@ run — Program
(kernel mode) {user mode)

a Process A&
timer intarrupt

save regsiA) to k-stack(a)
mave ta kernel mode
jump to trap handler

Handle the trap
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to kestack(B)
return-from-trap (into B)
restore regs(8) from k-stack(B)

move to user mode
q Process B

Jump to B PC

TCSS422: Operating Systems [Fall 2021]

Scibegiziauz) School of Engineering and Technology, University of Washington - Tacoma La.61

61

L4.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

05 @ boot
(kernal mode)

initialize trap table

Hardware

remember address of
syscall handlar
timer handler

start interrupt timer
start timer
interrupt CPU in X ms

Frogram

Hardware

Context Switch

Call switch() routine
save regs(A) to proc-structiA]
restore regs(B) from proc-struct(B)
switch to kestack(B)

return-from-trap (into B)

restore regs(8) from k-stack(B)

move to user mode
q Process B

Jump to B PC

TCSS422: Operating Systems [Fall 2021]

Ostober 22021 School of Engineering and Technology, University of Washington - Tacoma L462

62

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= nterrupt can be interrupted when preempt_count=0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

l T TC55422; Operating Systems [Fall 20211 en

School of Engineering and Technology, University of Washington - Tacoma

64

Slides by Wes J. Lloyd

10/12/2021

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCS5422; Operating Systems [Fall 2021]
l OSte e L2028 School of Engineering and Technology, University of Washington - Tacoma La63

63

QUESTIONS

65

L4.11

