TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

October7,2021 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 10/7

| = Questions from 10/5 |
= C Review Survey - Due Sunday Oct 10
® Student Background Survey
® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021] | 132 |

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.1

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

VIRTUAL MACHINE SUPPORT

ON APPLE M1

® |nstalling a Ubuntu Virtual Machine on Apple M1 MacBooks:
FREE
https://mac.getutm.app/

® MACs have switched to using ARM-based CPUs
= Motivation: faster, less expensive than Intel-based CPUs

icometo
ture of M:

TCSS422: Operating Systems [Fall 2021] 133
School of Engineering and Technology, University of Washington - Tacoma :

October 7, 2021

TEXT BOOK COUPON

= 15% off textbook code: TRICKA15 (through Friday Oct 8)

= https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-
arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-
23779877.html?page=1&pageSize=4

TCSS422: Operating Systems [Fall 2021] | 3.4 |

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.2

https://mac.getutm.app/
https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

10/7/2021

TCSS 422 A - Fall 2021
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p
® Thursday surveys: due ~ Mon @ 9p, closes 11:59p
=— TCSS 422 A > Assignments

Spring 2021 X
~ rchn ror A 2N |
Home

Announcements
* Upcoming Assignments

Zoom
Sllabus TCSS 422 - Online Dai
P - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Fall 2021]
October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma L35
5
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Fall 2021]
Octobenzi202 School of Engineering and Technology, University of Washington - Tacoma L3.6
6

Slides by Wes J. Lloyd L3.3

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (28 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.00 (T - previous 5.64)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.89 (T - previous 5.38)

October 7, 2021

TCSS422: Computer Operating Systems [Fall 2021] 137
School of Engineering and Technology, University of Washington - Tacoma :

FEEDBACK

® Trying to conceptualize the reason for virtual addresses
(in Operating Systems)

= Security: if physical addresses were exposed, an attacker could
acquire the physical address and attempt to read, modify, write the
data

= Program Relocation: because users only see virtual addresses, the
0S can physically move programs to new locations without changing
any user pointers

= Memory defragmentation: OS can dynamically reorganize memory
for better efficiency. All user pointers are virtual. Virtual pointers still
work and are translated to new addresses

= Shared Libraries: Two programs can have a virtual address (pointer)
to a shared library that is mapped by the OS to a single physical
address. The sharing and library location are abstracted. Shared
libraries are important to save memory.

TCSS422: Operating Systems [Fall 2021] 138
School of Engineering and Technology, University of Washington - Tacoma i

October 7, 2021

Slides by Wes J. Lloyd L3.4

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

MOTIVATION FOR LINUX

® |t is worth noting the importance of Linux for today’s
developers and computer scientists.

= The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

= Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

= https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= The majority of application back-ends (server-side), cloud or
not, run on Linux.

® This is due to licensing costs, example:

TCSS422: Operating Systems [Fall 2021] | 13.9 |

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

MOTIVATION FOR LINUX - 2

= Consider an example where you're asked to develop a web
services backend that requires 10 x 8-CPU-core virtual servers

® Your organization investigates hosting costs on Amazon cloud
= 8-core VM is “cbd.2xlarge”

Name Instance type | Memory vCPUs | Linux On Demand cost | Windows On Demand cost
C5 High-CPU Extra Large c5d.xlarge 8.0GiB | 4vCPUs £0.192000 hourly £0.376000 hourly
IC5 High-CPU 18xlarge c5d.18xlarge | 144.0 GIiB | 72 vCPUs 3.456000 hourly 6.768000 hourly
C5 High-CPU Large c5d.large 4.0 GIB 2 vCPUs £0.096000 hourly £0.188000 hourly
IC5 High-CPU 24xlarge c5d.24xlarge | 192.0 GiB | 96 vCPUs £4.608000 hourly 9.024000 hourly
IC5 High-CPU Quadruple Extra Large c5d.4xlarge 32.0 GiB | 16 vCPUs £0.768000 hourly 1.504000 hourly
CE Linh. ool Lol Ermaral ET RN WY RYar=Ti A E0B0N0 Ko D.00A000 haur

I.CE High-CPU Double Extra Large c5d.2xlarge 16.0 GIB_| 8 vCPUs 50.384000 hourly B0.752000 hourly -I
C5 High-CPU 9xlarge c5d.9xlarge 72.0 GIB_| 36 vCPUs 1728000 hourly $3.384000 hourly

= Windows hourly price 75.2¢
® Linux hourly price 38.4¢
= See: https://www.ec2instances.info/

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 13.10

October 7, 2021

10

Slides by Wes J. Lloyd L3.5

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.ec2instances.info/

TCSS 422 A - Fall 2021
School of Engineering and Technology

MOTIVATION FOR LINUX - 2

= See: https://www.ec2instances.info/

TCSS422: Operating Systems [Fall 2021]

13.11
School of Engineering and Technology, University of Washington - Tacoma 3

| October 7, 2021

11

OBJECTIVES - 10/7

® Questions from 10/5
| = C Review Survey - Due Sunday Oct 10 |
® Student Background Survey
® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1312

October 7, 2021

12

Slides by Wes J. Lloyd

10/7/2021

L3.6

https://www.ec2instances.info/

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5
= C Review Survey - Due Sunday Oct 10
| = Student Background Survey |

® Virtual Machine Survey: VM requests sent to S. Rondeau

® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.13

13

STUDENT BACKGROUND SURVEY

® Please complete the Student Background Survey

" https://forms.gle/BuJwXPwZpqf6cnTQ9

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.14

14

Slides by Wes J. Lloyd

10/7/2021

L3.7

https://forms.gle/BuJwXPwZpqf6cnTQ9

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5
= C Review Survey - Due Sunday Oct 10
® Student Background Survey
|I Virtual Machine Survey: VM requests sent to S. Rondeau |
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.15

15

VIRTUAL MACHINE SURVEY

® Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

=https://forms.gle/V2sg4iWiawvhFx4WS8

=Will close Thursday 10/7...

= VM requests will be sent to Stephen Rondeau for set up

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.16

16

Slides by Wes J. Lloyd L3.8

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

® Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
| = Assignment 0 |

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.17

17

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

= Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

| = Chapter 4: Processes|
= Process states, context switches
= Kernel data structures for processes and threads
® Chapter 5: Process API
= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1318

October 7, 2021

18

Slides by Wes J. Lloyd L3.9

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

|
Process State

__admitted interrupt
N 3

5),
scheduler dispatch |

o\) wo

or \ Ao
event completion ,; event wait

§ /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Fall 2021]

(@il 17, AP School of Engineering and Technology, University of Washington -

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

® Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes
|- Process states, context switchesl
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1320

October 7, 2021

20

Slides by Wes J. Lloyd L3.10

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Fall 2021]

13.21
School of Engineering and Technology, University of Washington - Tacoma 3

October 7, 2021

21

PROCESS STATE TRANSITIONS

Descheduled

—_—> Ready
Scheduled
1/0: initiate\ //O: done
Blocked

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1322

October 7, 2021

22

Slides by Wes J. Lloyd L3.11

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

OBSERVING PROCESS META-DATA

® Can inspect the number of CONTEXT SWITCHES made by a
process

® Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status
thread vulnerable

a-7
,00000001

untary_ 1377 oy,

ponvolunta ry7(¥xt75wit(h-&s: 18_,‘-“'
duote e ——

= proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.23 |

23

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
® 2 000 context switches is near 100ms

Without CPU affinity

Cost of context swiiching on & dual Intel 5150
50000 v " v T v T 240
45000 el { 220
g 40000 1am =
f{, 35000 | 180 %
> 30000 { .
3 {160 g
§ 25000 | 5
5 20000 i .
E 15000 { 120 ,g
10000 — Contaxt swih 1{ 100
5000 . . " . . -l | a0
1] 10 0 30 &0 50 60 1o 80 00 100
Working sel size (KB)
TCSS422: Operating Systems [Fall 2021]
A A a L3.24
(@riel i 2], 2P School of Engineering and Technology, University of Washington - Tacoma

24

Slides by Wes J. Lloyd L3.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

When a process is in this state, it is
-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED Allofthe None of
above the above

TCSS422: Operating Systems [Fall 2021]
.. October 7, 2021 searthe presgspissibf<E NiFEBHNG ARE TEERHOR AR ERIFSN T AP RHEXGAD/ TRBOma L3~2!.

25

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

® (a) RUNNING

= (b) READY

® (c) BLOCKED

= (d) All of the above

= (e) None of the above

October 7, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1326

26

Slides by Wes J. Lloyd

10/7/2021

L3.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

® Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
® Assignment O

® Chapter 4: Processes

= Process states, context switches

I- Kernel data structures for processes and threadsl
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

L3.27
School of Engineering and Technology, University of Washington - Tacoma 3

| October 7, 2021

27

PROCESS DATA STRUCTURES

® OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1328

October 7, 2021

28

Slides by Wes J. Lloyd

10/7/2021

L3.14

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

®Process Control process state
Block (PCB) process number
program counter

mKey data regarding a

process registers
memory limits
list of open files
e o @
October 7, 2021 TCSS422: Operating Systems [Fall 2021] L3.29

School of Engineering and Technology, University of
\Washinntan - Tacoma

29

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

// the

// to

registers xv6 will save and restore
top and subsequently restart a process
struct context {
int eip; // Index pointer
int esp;
int ebx;
int ecx;
int edx;
int esi;
int edi;
int ebp;

}i

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1330

October 7, 2021

30

Slides by Wes J. Lloyd L3.15

TCSS 422 A - Fall 2021
School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem;

uint sz;

char *kstack;

enum proc_state state;
int pid;

struct proc *parent;
void *chan;

int killed; f non-zero, he
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; C :
struct context context;
struct trapframe *tf;

on chan
1 killed

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.31

31

LINUX: STRUCTURES

Estruct task struct, equivalent to struct proc
=The Linux process data structure

= Kernel data type (i.e. record) that describes
individual Linux processes

= Structure is VERY LARGE: 10,000+ bytes

= Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 - 1394
Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 - 1852

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.32 |

32

Slides by Wes J. Lloyd

10/7/2021

L3.16

TCSS 422 A — Fall 2021

School of Engineering and Technology

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernel v 5.11)

= Process ID

=pid_t pid; LOC #857
= Process State

= /* -1 unrunnable, 0 runnable, >0 stopped: */
mvolatile long state; LOC #666

= Process time slice
how long the process will run before context switching

® Struct sched_rt_entity used in task_struct contains timeslice:
=struct sched_rt_entity rt; LOC #710
=unsigned int time_slice; LOC #503

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.33

33

STRUCT TASK_STRUCT - 2

= Address space of the process:
= “mm” is short for “memory map”
= struct mm_struct *mm; LOC #779

= Parent process, that launched this one
= struct task_struct __rcu *parent; LOC #874

= Child processes (as a list)

mstruct list_head children; LOC #879
= Open files
mstruct files_struct *files; LOC #981

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.34

34

Slides by Wes J. Lloyd

10/7/2021

L3.17

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3" edition

Robert Love

Addison-Wesley

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.35

35

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

= Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

® Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

TCSS422: Operating Systems [Fall 2021]

| October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.36

36

Slides by Wes J. Lloyd L3.18

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

WE WILL RETURN AT
2:50PM

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington -

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington -

38

Slides by Wes J. Lloyd L3.19

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

® Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

TCSS422: Operating Systems [Fall 2021]

| October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.39

39

fork()

m Creates a new process - think of “a fork in the road”
= “Parent” process is the original
® Creates “child” process of the program from the current
execution point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

October 7, 2021

40

Slides by Wes J. Lloyd L3.20

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());
// fork failed; exit

‘ int rc fork();
£ (rc < 0) { ;

fprintf (stderr, "fork failed\n");

exit (1) ;
} else if (rc == 0) { // child (new ¢ cess)

printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent gc d this path (main)

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());
}

return 0;

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.41

41

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

13.42

42

Slides by Wes J. Lloyd L3.21

TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS422: Operating Systems [Fall 2021]

L3.4
School of Engineering and Technology, University of Washington - Tacoma 343

October 7, 2021

43

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

= Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork() exec()

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1344

October 7, 2021

44

Slides by Wes J. Lloyd

10/7/2021

L3.22

TCSS 422 A - Fall 2021
School of Engineering and Technology

= wait(), waitpid()
= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

October 7, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

45

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;

} else if (rc == 0) { // child (new proc

printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent g down this path (main)
‘ int wec = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}

return 0;

October 7, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

46

Slides by Wes J. Lloyd

10/7/2021

L3.23

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

FORK WITH WAIT - 2

®m Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.47

47

FORK EXAMPLE

® Linux example

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 1348

October 7, 2021

48

Slides by Wes J. Lloyd L3.24

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

OBJECTIVES - 10/7

® Questions from 10/5

= C Review Survey - Due Sunday Oct 10

® Student Background Survey

® Virtual Machine Survey: VM requests sent to S. Rondeau
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(),|exec()

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.49

49

exec()

® Supports running an external program by “transferring control”
m 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argil, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.50

50

Slides by Wes J. Lloyd L3.25

TCSS 422 A — Fall 2021

School of Engineering and Technology

EXEC() - 2

= Common use case:
= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services

= Legacy program thought of as a “black box”

= We don’t want to know what is inside...

Output
Input —>

internal behavior of the eode is unknewn

October 7, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L3.51

51

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { / child (new process)

printf("hello, I am child (pid:%d)\n", (int)
‘ char *myargs[3];

myargs[0] = strdup("wc");

myargs[1l] = strdup("p3.c");

myargs[2] = NULL;

getpid());

October 7, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L3.52

52

Slides by Wes J. Lloyd

10/7/2021

L3.26

TCSS 422 A — Fall 2021

School of Engineering and Technology

EXEC EXAMPLE - 2

- execvp (myargs[0], myargs); // runs word count
printf ("this shouldn’t print out");
} else { // parent g
int wc = wait (NULL);
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n"
rc, wc, (int) getpid());

dJown this patkh

(main)

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.53

53

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main (int argc, char *argv([]) {
int rc = fork();

it (rc < 0) { // fork failed; ex
fprintf (stderr, "fork failed\n");
exit(1);
} else if (rc == 0) { // child: redirect standard output to

close (STDOUT_FILENO) ;
- open ("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

a file

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.54

54

Slides by Wes J. Lloyd

10/7/2021

L3.27

TCSS 422 A — Fall 2021

School of Engineering and Technology

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

October 7, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L3.55

55

} else { // parent gc

i exec

char *myargs([3];

myargs[0] = strdup("wc");
myargs[1] = strdup("p4.c");
myargs[2] = NULL;

execvp (myargs[0], myargs);

int wc = wait (NULL);

return 0;

ount

this path (main)

./p4

prompt> cat p4.output
32 109 846 p4.c

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

October 7, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L3.56

56

Slides by Wes J. Lloyd

10/7/2021

L3.28

TCSS 422 A - Fall 2021
School of Engineering and Technology

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() Noneof Allof
the the
above above

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

57

QUESTION: PROCESS API

® Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

® (¢) Wait()

= (d) None of the above
= (e) All of the above

TCSS422: Operating Systems [Fall 2021]

October 7, 2021 School of Engineering and Technology, University of Washington - Tacoma

L3.58

58

Slides by Wes J. Lloyd

10/7/2021

L3.29

TCSS 422 A - Fall 2021 10/7/2021
School of Engineering and Technology

QUESTIONS

59

Slides by Wes J. Lloyd L3.30

